Publications by authors named "Sachin Thakur"

Poloxamer hydrogels are of interest as injectable depot delivery systems. However, their use for delivering hydrophobic drugs, such as curcumin, is limited due to poor loading capacity. Here, we evaluated the influence of incorporating hydrophobic medium chain triglycerides (MCT) or amphiphilic polyethylene glycol 400 (PEG400) on the physicochemical properties, drug loading, and in vitro compatibility of a curcumin-loaded poloxamer hydrogel.

View Article and Find Full Text PDF

Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord.

View Article and Find Full Text PDF

Introduction: Ischemic gut injury is common in the intensive care unit, impairs gut barrier function, and contributes to multiorgan dysfunction. One novel intervention to mitigate ischemic gut injury is the direct luminal delivery of oxygen microbubbles (OMB). Formulations of OMB can be modified to control the rate of oxygen delivery.

View Article and Find Full Text PDF

Zygomatic bone fractures should be effectively diagnosed and treated because they affect how the face is shaped for both aesthetically and functional reasons. It is possible to compare different surgical techniques and their comorbidities objectively through using outcome quantitative assessments, which call for a treatment programme and long-term follow-up. The purpose of this study was to compare the outcomes of two procedures and the effectiveness of the zygomatic bone following open reduction internal fixation (ORIF) employing two-point fixation and ORIF employing three-point fixation.

View Article and Find Full Text PDF

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation.

View Article and Find Full Text PDF

Hydrogels are promising ultrasound-responsive drug delivery systems. In this study, we investigated how different ultrasound parameters affected drug release and structural integrity of self-healing hydrogels composed of alginate or poloxamers. The effects of amplitude and duty cycle at low frequency (24 kHz) ultrasound stimulation were first investigated using alginate hydrogels at 2% w/v and 2.

View Article and Find Full Text PDF

Standard rheometers assess mechanical properties of viscoelastic samples up to 100 Hz, which often hinders the assessment of the local-scale dynamics. We demonstrate that high-frequency analysis can be achieved by inducing broadband waves and monitoring their media-dependent propagation using optical coherence tomography. Here, we present a new broadband wave analysis based on two-dimensional Fourier transformation.

View Article and Find Full Text PDF

Advances in diagnostic and imaging capabilities have allowed cancers to be detected earlier and characterized more robustly. These strategies have recently branched into theranostics whereby contrast agents traditionally used for imaging have been co-loaded with therapeutics to simultaneously diagnose and treat cancers in a patient-specific manner. Microbubbles (MBs) and nanobubbles (NBs) are contrast agents which can be modulated to meet theranostic needs particularly in the realm of oncology.

View Article and Find Full Text PDF

Purpose: To characterize corneal biomechanical properties utilizing a dynamic ultra-high-speed Scheimpflug camera equipped with a non-contact tonometer (CorVis ST, CST) in keratoconic corneas following continuous high intensity, high irradiance corneal cross-linking.

Design: Prospective longitudinal single-centre study at a tertiary referral center.

Methods: Corneal biomechanical properties were measured in patients with progressive keratoconus undergoing high intensity (30 mW/cm), high irradiance (5.

View Article and Find Full Text PDF

Tissue regeneration aims to achieve functional restoration following injury by creating an environment to enable the body to self-repair. Strategies for regeneration rely on the introduction of biomaterial scaffolding, cells and bioactive molecules into the body, at or near the injury site. Of these bioactive molecules, growth factors (GFs) play a pivotal role in directing regenerative pathways for many cell populations.

View Article and Find Full Text PDF

Collagen is the most abundant protein in mammals and possesses high biocompatibility and low antigenicity. These biological properties render it one of the most useful biomaterials for medical applications. This study investigated the mechanical and physical characteristics of collagen hydrogels cross-linked with different ratios of polyvinylpyrrolidone capped zinc oxide nanoparticles (ZPVP).

View Article and Find Full Text PDF

Ultrasound (US) assisted drug delivery is receiving interest in treating posterior eye diseases, such as diabetic retinopathy due to its ability to maximize drug penetration into difficult to reach tissues. Despite its promise, the technique has only been investigated using healthy cell and tissue models, with no evidence to date about its safety in active disease. As a result, the aim of this study was to evaluate the safety of US administration in vitro in retinal pigment epithelial cells under normal and high glucose conditions.

View Article and Find Full Text PDF

Lipid-shelled microbubbles have received extensive interest to enhance ultrasound-responsive drug delivery outcomes due to their high biocompatibility. While therapeutic effectiveness of microbubbles is well established, there remain limitations in sample homogeneity, stability profile and drug loading properties which restrict these formulations from seeing widespread use in the clinical setting. In this review, we evaluate and discuss the most encouraging leads in lipid microbubble design and optimisation.

View Article and Find Full Text PDF

Clinical Relevance: The monitoring and controlling of pH is important when preparing solutions for ophthalmic administration. In the case of povidone-iodine, dilution in an appropriate buffer is needed to improve its ophthalmic safety.

Background: Povidone-iodine is a broad-spectrum antiseptic agent that is commonly used in ophthalmic applications due to its cost-effectiveness and accessibility.

View Article and Find Full Text PDF

Vitreous liquefactive processes play an integral role in ocular health. Knowledge of the degree of liquefaction would allow better monitoring of ocular disease progression and enable more informed therapeutic dosing for an individual patient. Presently this process cannot be monitored in a non-invasive manner.

View Article and Find Full Text PDF

Artificial vitreous humor holds immense potential for use in in vitro intravitreal drug delivery assays. In this study, we investigated rheological properties and drug or nanoparticle migration in hyaluronic acid (HA) - agar based hydrogels and compared these characteristics with bovine vitreous humor. Gel compositions identified in literature containing HA (0.

View Article and Find Full Text PDF

The periocular space is a promising alternative route for the delivery of drugs to the posterior eye segment, especially when treating conditions in the outer ocular layers. In this review, we discuss the different periocular routes as well as the physiological barriers and elimination mechanisms limiting drug bioavailability at the back of the eye. We then highlight various types of depot formulations, including particulate delivery systems, semisolid formulations, and implants, used to increase the contact time with the ocular tissues.

View Article and Find Full Text PDF

Background: Povidone-iodine is used as a cost-effective broad-spectrum antiseptic in the prophylaxis and treatment of certain ocular infections. In this study, the stability, ophthalmic irritation potential and antibacterial efficacy of an extemporaneous povidone-iodine preparation was determined using established ex vivo and in vitro assays.

Methods: Extemporaneous iodine was prepared by simple dilution in normal saline.

View Article and Find Full Text PDF

The intravitreal route faces many challenges in rapidly and effectively reaching posterior eye pathology, with administered therapeutics experiencing non-specific distribution around and premature clearance from ocular tissues. Nanobubbles and ultrasound may improve outcomes of intravitreally administered drugs by influencing the directionality of drug-containing particle migration. In this study, we assessed the impact of trans-scleral or corneal ultrasound application on the distribution of intravitreally-injected nanobubbles.

View Article and Find Full Text PDF

The use of corneal tissue for ex vivo therapeutic evaluations is limited due to its rapid loss of viability after excision. Optimization of storage conditions may allow prolonged retention of physical tissue properties. In this study, we evaluated how storage in optimized organ culture (OC) medium at 37°C or phosphate-buffered saline (PBS) at 2-8°C impacted physical properties of bovine corneas.

View Article and Find Full Text PDF

Physicochemical properties of nanoparticles, such as size, shape, surface charge, density, and porosity play a central role in biological interactions and hence accurate determination of these characteristics is of utmost importance. Here we propose tunable resistive pulse sensing for simultaneous size and surface charge measurements on a particle-by-particle basis, enabling the analysis of a wide spectrum of nanoparticles and their mixtures. Existing methodologies for measuring zeta potential of nanoparticles using resistive pulse sensing are significantly improved by including convection into the theoretical model.

View Article and Find Full Text PDF

The use of sunscreen products is widely promoted by schools, government agencies, and health-related organizations to minimize sunburn and skin damage. In this study, we developed stable solid lipid nanoparticles (SLNs) containing the chemical UV filter octyl methoxycinnamate (OMC). In parallel, we produced similar stable SLNs in which 20% of the OMC content was replaced by the botanical urucum oil.

View Article and Find Full Text PDF

This study reports on the impact of cyclodextrin addition on the phase behavior of microemulsion systems. Three distinct oil-in-water microemulsions were formulated and subjected to increasing concentrations of various cyclodextrins. The prepared formulations underwent visual, textural and microscopic characterization followed by the evaluation of their in vitro drug release and ex vivo tissue retention behavior.

View Article and Find Full Text PDF