Thioacetamido nucleic acids (TANA) contain a backbone modification of dinucleotides consisting of a 5-atom amide linker N3'-COCH2-S-CH2 at thymidine or thymidine-cytidine dimer blocks. Here, the chemical synthesis of the TANA linked 5-methyl-cytidine-cytidine ((Me)cc) dimer block and its incorporation into the DNA sequence, complementary to human microRNA 34 (miR-34) is described. Further, for the first time, we demonstrate the biological applications of TANA modified oligonucleotides in detection and intracellular knockdown of a cancer related microRNA in comparison with DNA containing locked nucleic acid (LNA) and 2'-O-methyl modifications.
View Article and Find Full Text PDFSubtle differences in RNA and DNA duplex geometry could be sensed by the changed stereochemistry at 3'-amino function in the 5-atom thioacetamido linker of thioacetamido-linked nucleic acids and iso-thioacetamido-linked nucleic acids modified oligomers. In contrast to the preferred N-type sugar conformations for either 3'- ribo- or xylo amino nucleosides, predominant S-type sugar conformations were found in the dimers. Although the CD spectral differences for the dimer blocks were found to be identical for those found in phosphodiester linked ribo/xylo dimers, the 5-atom thioactamido linker could reverse the RNA binding selectivity to DNA binding selectivity by the change in configuration at the 3'-amino-substituted sugar.
View Article and Find Full Text PDFThe N-(pyrrolidin-2-ethyl) glycine-based PNA (pet-PNA) backbone, with 4-amino or 4-guanidino-functionalized pyrrolidine ring, confers constrained conformational flexibility on aegPNA. The oligomers bind to the target DNA and RNA sequences with increased sequence specificity and antiparallel versus parallel orientation selectivity. The easy post-synthetic guanidination gives very good access to the positively charged PNA oligomers.
View Article and Find Full Text PDF