Naturally occurring N-glycans display much diversity in modifications, linkages, and peripheral presentation of the oligosaccharide chain. Despite continued advancements in oligosaccharide synthesis, synthetic access to these natural glycans remains challenging. Biologically relevant complex N-glycan mimetics with various natural and unnatural modifications are an alternate way for investigating glycan-protein interactions.
View Article and Find Full Text PDFEnzymatic synthesis that is commenced by the sugar nucleotide regeneration system (SNRS) protocol can minimize 1) the consumption of exorbitant sugar nucleotides, 2) the amount of transferases required, and 3) byproduct feedback inhibition. In this study, LacNAc extensions/modifications of the N-linked mannose core were carried out efficiently with SNRS with high yields and purities on all branches in a uniform manner. In addition, we demonstrate that with SNRS, bacterial glycosyltransferases exhibit a wide acceptor tolerance for bi- and triantennary mannose core structures as substrates for target oligosaccharides.
View Article and Find Full Text PDFElucidation of protein-protein interactions (PPIs) is often very challenging and yields complex and unclear results. Lectin-glycoprotein interactions are especially difficult to study due to the noncovalent nature of the interactions and inherently low binding affinities of proteins to glycan ligands on glycoproteins. Here, we report a "ligand-directed labeling probe (LLP)"-based approach to fabricate protein probes for elucidating protein-glycoprotein interactions.
View Article and Find Full Text PDF