Bioengineering (Basel)
October 2016
The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis.
View Article and Find Full Text PDFMicrofluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop.
View Article and Find Full Text PDFCell-based assays play a critical role in discovery of new drugs and facilitating research in cancer, immunology, and stem cells. Conventionally, they are performed in Petri dishes, tubes, or well plates, using milliliters of reagents and thousands of cells to obtain one data point. Here, we are introducing a new platform to realize cell-based assay capable of increased throughput and greater sensitivity with a limited number of cells.
View Article and Find Full Text PDFWe demonstrate the accommodation of log-scale concentration gradients of inhibitors on a single microfluidic chip with a semidirect dilution capability of reagents for the determination of the half-inhibitory concentration or IC(50). The chip provides a unique tool for hosting a wide-range of concentration gradient for studies that require an equal distribution of measuring points on a logarithmic scale. Using Matrix metalloproteinase IX and three of its inhibitors, marimastat, batimastat, and CP471474, we evaluated the IC(50) of each inhibitor with a single experiment.
View Article and Find Full Text PDFWe present a new methodology for generating a stepwise concentration gradient in a series of microdroplets by using monolithic micro valves that act as "faucets" in micrometer-scale. A distinct concentration gradient of a substrate was generated for the determination of the kinetic parameters of two different enzymes using only 10 picoliter-scale droplets. With a single experiment on a chip, we obtained K(M) and k(cat) values of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and compared the catalytic competence of the two enzymes.
View Article and Find Full Text PDFWe describe a microfluidic device for generating nonlinear (exponential and sigmoidal) concentration gradients, coupled with a microwell array for cell storage and analysis. The device has two inputs for coflowing multiple aqueous solutions, a main coflow channel and an asymmetrical grid of fluidic channels that allows the two solutions to combine at intersection points without fully mixing. Due to this asymmetry and diffusion of the two species in the coflow channel, varying amounts of the two solutions enter each fluidic path.
View Article and Find Full Text PDFWe have demonstrated a multistep enzyme reaction on a chip to determine the key kinetic parameters of enzyme reaction. We designed and fabricated a fully integrated microfluidic chip to have sample metering, mixing, and incubation functionalities. The chip generates a gradient of reagent concentrations in 11 parallel processors.
View Article and Find Full Text PDF