Publications by authors named "Sachin Agate"

The production of micro- and nano-fibrillated cellulose (MNFC) from paper mill sludge (PS) using simple enzymatic and mechanical treatments has been evaluated for their performance as value-added materials in packaging and other applications. Sludge from a US paper mill was analyzed for the viability of this conversion process. The enzymatic treatment was conducted at variable concentrations using an enzyme cocktail of exoglucanase and endoglucanase, followed by mechanical dual asymmetric centrifugation (DAC) treatment.

View Article and Find Full Text PDF

Transparent polymers and plastics are used to create molded parts and films for many applications. The colors of these products are of great importance for the suppliers, manufacturers, and end-users. However, for simplicity of the processing, the plastics are produced in the form of small pellets or granules.

View Article and Find Full Text PDF

Sustainable practices that reduce food loss are essential for enhancing global food security. We report a 'wrap and plant' seed treatment platform to protect crops from soil-borne pathogens. Developed from the abundantly available wastes of banana harvest and recycled old, corrugated cardboard boxes via chemical-free pulping, these paper-like biodegradable seed wraps exhibit tunable integrity and bioavailability of loaded moieties.

View Article and Find Full Text PDF

This review explores biobased polymers for industrial applications, their end fate, and most importantly, origin and key aspects enabling soil biodegradation. The physicochemical properties of biobased synthetic and natural polymers and the primary factors governing degradation are explored. Current and future biobased systems and factors allowing for equivalent comparisons of degradation and possible sources for engineering improved biodegradation are reviewed.

View Article and Find Full Text PDF

Hydrogels are three-dimensional porous polymeric networks prepared by physical or chemical cross-linking of hydrophilic molecules, which can be made into smart materials through judicious chemical modifications to recognize external stimuli; more specifically, this can be accomplished by the integration with stimuli-responsive polymers or sensing molecules that has drawn considerable attention in their possible roles as sensors and diagnostic tools. They can be tailored in different structures and integrated into systems, depending on their chemical and physical structure, sensitivity to the external stimuli and biocompatibility. A panoramic overview of the sensing advances in the field of hydrogels over the past several decades focusing on a variety protocols of hydrogel preparations is provided, with a major focus on natural polymers.

View Article and Find Full Text PDF

Replacing synthetic polymers with renewable alternatives is a critical challenge for the packaging industry. This research investigated the use of leaf-based proteins as a sustainable co-binder in the coating formulations for paper-based packaging and other applications. Protein isolates from tobacco leaf and alfalfa concentrates were characterized using the Pierce protein assay, Kjeldahl nitrogen, and gel electrophoresis.

View Article and Find Full Text PDF

Rational spatiotemporal irradiation of cellulose-based hydrogels (carboxymethylcellulose (CMC), citric acid, and riboflavin) using a laser diode stereolithography 3D printer obtained architectures referred to as photodegradation addressable hydrogels (PAHs). Under irradiation, these PAHs engage in an unprecedented spatially resolved zonal swelling illustrating marked but controllable changes in swelling and thickness while concomitantly obtaining improved oxygen transmission rate values by 5 times. XPS, carboxyl content, and swelling data comparisons of hydrogel formulations show that photodegradation and ablation of the material occur, where hydroxyl sites of CMC are converted to aldehydes and ketones.

View Article and Find Full Text PDF

A hybrid poly(N-isopropylacrylamide) (PNIPAm)/cellulose nanofibrils (CNFs) hydrogel composite was fabricated by inverted stereolithography 3D printing to provide a new platform for regulating lower critical solution temperature (LCST) properties and thus tuning optical and bioadhesive properties. The phenomena of interest in the as-printed PNIPAm/CNF hydrogels may be attributed to the fiber-reinforced composite system between crosslinked PNIPAm and CNFs. The optical tunability was found to be correlated to the micro/nano structures of the PNIPAm/CNF hydrogel films.

View Article and Find Full Text PDF

A hybrid materials system to modulate lower critical solution temperature (LCST) and moisture content for thermo-responsivity and optical tunability was strategically developed by incorporating cellulose nanocrystals (CNCs) into a poly(N-isopropylacrylamide) (PNIPAm) hydrogel matrix. The PNIPAm/CNC hydrogel films exhibit tunable optical properties and wavelength bandpass selectivity as characterized by PROBE Spectroscopy and Dynamic Light Scattering (DLS). Importantly, the micro/nano structures of the PNIPAm/CNC hydrogel films were completely different when dried below and above the LCST.

View Article and Find Full Text PDF

Flexible-hybrid printed electronics (FHPE) is a rapidly growing discipline that may be described as the precise imprinting of electrically functional traces and components onto a substrate such as paper to create functional electronic devices. The mass production of low-cost devices and components such as environmental sensors, bio-sensors, actuators, lab on chip (LOCs), radio frequency identification (RFID) smart tags, light emitting diodes (LEDs), smart fabrics and labels, wallpaper, solar cells, fuel cells, and batteries are major driving factors for the industry. Using renewable and bio-friendly materials would be advantageous for both manufacturers and consumers with the increased use of (FHPE) electronics in our daily lives.

View Article and Find Full Text PDF