Anal Bioanal Chem
September 2024
Reverse transcription-digital PCR (RT-dPCR) is attracting attention as a method that enables SI-traceable RNA quantification without calibration, but its accuracy and bias have not been thoroughly studied. In this study, the accurate quantification of RNA by the RT-dPCR method was investigated using NMIJ CRM 6204-b, an RNA certified reference material whose certified value was assigned by orthogonal chemical measurement methods. Moreover, a two-step RT-dPCR method was adopted to examine in detail the conditions for the RT reaction process, which was expected to be the major uncertainty component in the RT-dPCR measurement.
View Article and Find Full Text PDFTo facilitate the development of effective viral detection techniques, a positive control material is required for validating their quantitative performance. Inactivated viruses serve as viable control materials, as they can be handled without the constraints of biohazard safety facilities. However, inactivation alters the structure of viral component molecules, necessitating the selection of inactivation methods that have minimal effects on the target molecules relevant to molecular detection techniques.
View Article and Find Full Text PDFA single-molecule assay (SiMoA) using a digital enzyme-linked immunosorbent assay (ELISA) has been attracting attention as a promising method that can detect viruses with ultra-high sensitivity. However, the quantitative application of digital ELISA has not been adequately reported. Therefore, in this study, we first evaluated the linearity and sensitivity of digital ELISA using a Certified Reference Material of C-reactive protein (NMIJ CRM 6201-c) as a quality control material.
View Article and Find Full Text PDFThe precise quantification of KRAS single nucleotide variant (SNV) is critical for the treatment and prognosis of lung and colorectal cancer. Validation of digital PCR (dPCR) as a method for accurate quantification of KRAS SNV has great clinical importance. An international co-validation on absolute quantification of KRAS SNV by dPCR was conducted among three national measurement institutes (NMIs) from China (NIM), South Korea (KRISS), and Japan (NMIJ).
View Article and Find Full Text PDFTwo 600-bp DNA solutions (DNA600-G and DNA600-T) were developed as certified reference material, NMIJ CRM 6205-a, for the validation of DNA quantification methods. Both DNA600-G and DNA600-T are ideal as "spike-in control" because these materials have artificial nucleic acid sequences. The certified values were determined as the mass concentration of total DNA (whole DNA materials in sample solution regardless of sequence) at 25 °C by formic acid hydrolysis/liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) and inductively coupled plasma-mass spectrometry (ICP-MS) based on the amount of phosphorus.
View Article and Find Full Text PDFThe performance indicator called limit of detection for microarray platform (LODP) was defined in ISO 16578:2013. The methods to determine practical LODP were explored. In general, + 3 SD of the background is used as the signal strength of limit of detection and criteria for dividing positive and negative results.
View Article and Find Full Text PDFLiquid chromatography-isotope dilution mass spectrometry (LC-IDMS) with formic acid hydrolysis was established for the accurate quantification of λDNA. The over-decomposition of nucleobases in formic acid hydrolysis was restricted by optimizing the reaction temperature and the reaction time, and accurately corrected by using deoxynucleotides (dNMPs) and isotope-labeled dNMPs as the calibrator and the internal standard, respectively. The present method could quantify λDNA with an expanded uncertainty of 4.
View Article and Find Full Text PDFWe have developed a highly sensitive method for the analysis of deoxynucleotide monophosphates (dNMPs), which involves the use of liquid chromatography/mass spectrometry (LC/MS) and a new metal-free column. The new column solves the problem that the phosphate group in dNMPs interacts with the metal portion of the device or column. After optimization of the analytical conditions, the limits of detection (LODs) of dNMPs were from 5.
View Article and Find Full Text PDF