Publications by authors named "Sachat A"

This experimental study investigates thermal rectification via asymmetric far-field thermal radiation on a fused silica slab. An asymmetrical distribution of surface emissivity is created over the device by partially covering the fused silica with a 100 nm thick aluminum film. The slab is subjected to a thermal bias, and when this bias is reversed, a small temperature difference is observed between the different configurations.

View Article and Find Full Text PDF

In this study, we present a comprehensive analysis of the thermoelectric (TE) properties of highly -axis-oriented thin films of layered misfit cobaltates BiSrCoO. The films exhibit a high -axis orientation, facilitating precise measurements of electronic transport and TE properties along the - crystallographic plane. Our findings reveal that the presence of nearly stoichiometric oxygen content results in high thermopower with metallic conductivity, while the annealing of the films in a reduced oxygen atmosphere eliminates their metallic behavior.

View Article and Find Full Text PDF

Effective thermal management of electronic devices encounters substantial challenges owing to the notable power densities involved. Here, we propose layered MoS phononic crystals (PnCs) that can effectively reduce thermal conductivity (κ) with relatively small disruption of electrical conductivity (σ), offering a potential thermal management solution for nanoelectronics. These layered PnCs exhibit remarkable efficiency in reducing κ, surpassing that of Si and SiC PnCs with similar periodicity by ~100-fold.

View Article and Find Full Text PDF

Artificially engineered 2D materials offer unique physical properties for thermal management, surpassing naturally occurring materials. Here, using van der Waals epitaxy, we demonstrate the ability to engineer extremely insulating thermal metamaterials based on atomically thin lattice-mismatched BiSe/MoSe superlattices and graphene/PdSe heterostructures with exceptional thermal resistances (70-202 m K/GW) and ultralow cross-plane thermal conductivities (0.012-0.

View Article and Find Full Text PDF

Layered Bi-misfit cobaltates, such as BiSrCoO, are the natural superlattice of an electrically insulating rocksalt (RS) type BiSrO layer and electrically conducting CoO layer, stacked along the crystallographic c-axis. RS and CoO layers are related through charge compensation reactions (or charge transfer). Therefore, thermoelectric transport properties are affected when doping or substitution is carried out in the RS layer.

View Article and Find Full Text PDF

Phonons play a key role in the physical properties of materials, and have long been a topic of study in physics. While the effects of phonons had historically been considered to be a hindrance, modern research has shown that phonons can be exploited due to their ability to couple to other excitations and consequently affect the thermal, dielectric, and electronic properties of solid state systems, greatly motivating the engineering of phononic structures. Advances in nanofabrication have allowed for structuring and phonon confinement even down to the nanoscale, drastically changing material properties.

View Article and Find Full Text PDF

Understanding heat flow in layered transition metal dichalcogenide (TMD) crystals is crucial for applications exploiting these materials. Despite significant efforts, several basic thermal transport properties of TMDs are currently not well understood, in particular how transport is affected by material thickness and the material's environment. This combined experimental-theoretical study establishes a unifying physical picture of the intrinsic lattice thermal conductivity of the representative TMD MoSe .

View Article and Find Full Text PDF

The degree of thermal anisotropy affects critically key device-relevant properties of layered two-dimensional materials. Here, we systematically study the in-plane and cross-plane thermal conductivity of crystalline SnSe films of varying thickness (16-190 nm) and uncover a thickness-independent thermal conductivity anisotropy ratio of about ∼8.4.

View Article and Find Full Text PDF

Managing thermal transport in nanostructures became a major challenge in the development of active microelectronic, optoelectronic and thermoelectric devices, stalling the famous Moore's law of clock speed increase of microprocessors for more than a decade. To find the solution to this and linked problems, one needs to quantify the ability of these nanostructures to conduct heat with adequate precision, nanoscale resolution, and, essentially, for the internal layers buried in the 3D structure of modern semiconductor devices. Existing thermoreflectance measurements and "hot wire" 3ω methods cannot be effectively used at lateral dimensions of a layer below a micrometre; moreover, they are sensitive mainly to the surface layers of a relatively high thickness of above 100 nm.

View Article and Find Full Text PDF

Heat dissipation and thermal management are central challenges in various areas of science and technology and are critical issues for the majority of nanoelectronic devices. In this review, we focus on experimental advances in thermal characterization and phonon engineering that have drastically increased the understanding of heat transport and demonstrated efficient ways to control heat propagation in nanomaterials. We summarize the latest device-relevant methodologies of phonon engineering in semiconductor nanostructures and 2D materials, including graphene and transition metal dichalcogenides.

View Article and Find Full Text PDF

We report on structural, compositional, and thermal characterization of self-assembled in-plane epitaxial Si Ge alloy nanowires grown by molecular beam epitaxy on Si (001) substrates. The thermal properties were studied by means of scanning thermal microscopy (SThM), while the microstructural characteristics, the spatial distribution of the elemental composition of the alloy nanowires and the sample surface were investigated by transmission electron microscopy and energy dispersive x-ray microanalysis. We provide new insights regarding the morphology of the in-plane nanostructures, their size-dependent gradient chemical composition, and the formation of a 5 nm thick wetting layer on the Si substrate surface.

View Article and Find Full Text PDF

Heat conduction in silicon can be effectively engineered by means of sub-micrometre porous thin free-standing membranes. Tunable thermal properties make these structures good candidates for integrated heat management units such as waste heat recovery, rectification or efficient heat dissipation. However, possible applications require detailed thermal characterisation at high temperatures which, up to now, has been an experimental challenge.

View Article and Find Full Text PDF

Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure.

View Article and Find Full Text PDF

The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs.

View Article and Find Full Text PDF