Publications by authors named "Sacha Reichman"

Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as a label-free imaging tool, capable of resolving cell types and organelles within 3D live samples, whilst monitoring their activity at tens of milliseconds resolution. Here, a D-FFOCT module design is presented which can be coupled to a commercial microscope with a stage top incubator, allowing non-invasive label-free longitudinal imaging over periods of minutes to weeks on the same sample. Long term volumetric imaging on human induced pluripotent stem cell-derived retinal organoids is demonstrated, highlighting tissue and cell organization processes such as rosette formation and mitosis as well as cell shape and motility.

View Article and Find Full Text PDF

Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as an invaluable live label-free and non-invasive imaging modality able to image subcellular biological structures and their metabolic activity within complex 3D samples. However, D-FFOCT suffers from fringe artefacts when imaging near reflective surfaces and is highly sensitive to vibrations. Here, we present interface Self-Referenced (iSR) D-FFOCT, an alternative configuration to D-FFOCT that takes advantage of the presence of the sample coverslip in between the sample and the objective by using it as a defocused reference arm, thus avoiding the aforementioned artefacts.

View Article and Find Full Text PDF

Retinal progenitor cells (RPCs) are the source of all retinal cell types during retinogenesis. Until now, the isolation and expansion of RPCs has been at the expense of their multipotency. Here, we report simple methods and media for the generation, expansion, and cryopreservation of human induced pluripotent stem-cell derived-RPCs (hiRPCs).

View Article and Find Full Text PDF

Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP.

View Article and Find Full Text PDF

Retinal degenerative diseases lead to the blindness of millions of people around the world. In case of age-related macular degeneration (AMD), the atrophy of retinal pigment epithelium (RPE) precedes neural dystrophy. But as crucial as understanding both healthy and pathological RPE cell physiology is for those diseases, no current technique allows subcellular in vivo or in vitro live observation of this critical cell layer.

View Article and Find Full Text PDF
Article Synopsis
  • Retinoblastoma is the most common eye cancer in children, originating from developing retinal cells, but its molecular behavior is not well understood.* -
  • Researchers identified two distinct subtypes of retinoblastoma: Subtype 1 is characterized by early onset and less genetic alteration, while Subtype 2 has recurrent genetic changes, is less differentiated, and has a higher likelihood of spreading.* -
  • Understanding these two subtypes can offer new insights into the biology and treatment of retinoblastoma, with subtype 1 being less aggressive and subtype 2 showing more aggressive traits and stem cell-like features.*
View Article and Find Full Text PDF

Muller glial cells (MGCs) are responsible for the homeostatic and metabolic support of the retina. Despite the importance of MGCs in retinal disorders, reliable and accessible human cell sources to be used to model MGC-associated diseases are lacking. Although primary human MGCs (pMGCs) can be purified from post-mortem retinal tissues, the donor scarcity limits their use.

View Article and Find Full Text PDF

Optic neuropathies are a major cause of visual impairment due to retinal ganglion cell (RGC) degeneration. Human induced-pluripotent stem cells (iPSCs) represent a powerful tool for studying both human RGC development and RGC-related pathological mechanisms. Because RGC loss can be massive before the diagnosis of visual impairment, cell replacement is one of the most encouraging strategies.

View Article and Find Full Text PDF

Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue but lacks functional information. We present dynamic full-field optical coherence tomography as a technique to noninvasively image living human induced pluripotent stem cell-derived retinal organoids. Coloured images with an endogenous contrast linked to organelle motility are generated, with submicrometre spatial resolution and millisecond temporal resolution, creating a way to identify specific cell types in living tissue via their function.

View Article and Find Full Text PDF

Generation of retinal organoids from pluripotent stem cells represents an important advance in the study of retinal development and offer new perspectives for the study of retinal diseases missing suitable animal models. Understanding the key stages of retinal development in vertebrates enabled to design protocols to generate self-organized three-dimensional structures derived from pluripotent stem cells and containing all retinal cell types. In addition to their application in basic research, such as the characterization of molecular and cellular mechanisms in retinal pathophysiology, these miniature organs also open up encouraging prospects in the field of cell therapy or the screening of therapeutic molecules, although some obstacles remain to be overcome.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (iPSC) lines were generated from fibroblasts of a patient affected with an autosomal dominant retinal dystrophy carrying the mutation c.782A>C, p.Glu261Ala in ITM2B and from an unaffected brother.

View Article and Find Full Text PDF

A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests.

View Article and Find Full Text PDF

The reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) has broad applications in regenerative medicine. The generation of self-organized retinal structures from these iPSCs offers the opportunity to study retinal development and model-specific retinal disease with patient-specific iPSCs and provides the basis for cell replacement strategies. In this study, we demonstrated that the major type of glial cells of the human retina, Müller cells, can be reprogrammed into iPSCs that acquire classical signature of pluripotent stem cells.

View Article and Find Full Text PDF

The production of specialized cells from pluripotent stem cells provides a powerful tool to develop new approaches for regenerative medicine. The use of human-induced pluripotent stem cells (iPSCs) is particularly attractive for neurodegenerative disease studies, including retinal dystrophies, where iPSC-derived retinal cell models mark a major step forward to understand and fight blindness. In this paper, we describe a simple and scalable protocol to generate, mature, and cryopreserve retinal organoids.

View Article and Find Full Text PDF

Photoreceptor degenerative diseases are a major cause of blindness for which cell replacement is one of the most encouraging strategies. For stem cell-based therapy using human induced pluripotent stem cells (hiPSCs), it is crucial to obtain a homogenous photoreceptor cell population. We confirmed that the cell surface antigen CD73 is exclusively expressed in hiPSC-derived photoreceptors by generating a fluorescent cone rod homeobox (Crx) reporter hiPSC line using CRISPR/Cas9 genome editing.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the long-term effects of tumor necrosis factor alpha (TNFα) on the structure and functions of retinal pigment epithelium (RPE) cells, which are essential for eye health.
  • Researchers exposed porcine RPE cells to varying levels of TNFα over 10 days, assessing their size, functions, and ability to maintain the barrier.
  • Results show that prolonged TNFα exposure leads to enlarged and multinucleated RPE cells, reduced gene expression critical for vision, and impaired barrier functions, similar to changes seen in age-related macular degeneration.
View Article and Find Full Text PDF

Intraocular injection of adeno-associated viral (AAV) vectors has been an evident route for delivering gene drugs into the retina. However, gaps in our understanding of AAV transduction patterns within the anatomically unique environments of the subretinal and intravitreal space of the primate eye impeded the establishment of noninvasive and efficient gene delivery to foveal cones in the clinic. Here, we establish new vector-promoter combinations to overcome the limitations associated with AAV-mediated cone transduction in the fovea with supporting studies in mouse models, human induced pluripotent stem cell-derived organoids, postmortem human retinal explants, and living macaques.

View Article and Find Full Text PDF

A human iPS cell line was generated from fibroblasts of a phenotypically unaffected patient from a family with PRPF31-associated retinitis pigmentosa (RP). The transgene-free iPS cells were generated with the human OSKM transcription factors using the Sendai-virus reprogramming system. iPS cells contained the expected c.

View Article and Find Full Text PDF

A human iPSC line was generated from fibroblasts of a patient affected with autosomal dominant Retinitis Pigmentosa (RP) carrying the mutation p.Gly56Arg in the NR2E3 gene. The transgene-free iPSCs were generated with the human OSKM transcription factors using the Sendai-virus reprogramming system.

View Article and Find Full Text PDF

Inherited retinal degenerations are blinding diseases characterized by the loss of photoreceptors. Their extreme genetic heterogeneity complicates treatment by gene therapy. This has motivated broader strategies for transplantation of healthy retinal pigmented epithelium to protect photoreceptors independently of the gene causing the disease.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells.

View Article and Find Full Text PDF

Orthodenticle homeobox 2 (OTX2) controls essential, homeostatic retinal pigment epithelial (RPE) genes in the adult. Using cocultures of human CD14 blood monocytes (Mos) and primary porcine RPE cells and a fully humanized system using human-induced pluripotent stem cell-derived RPE cells, we show that activated Mos markedly inhibit RPEOTX2 expression and resist elimination in contact with the immunosuppressive RPE. Mechanistically, we demonstrate that TNF-α, secreted from activated Mos, mediates the downregulation of OTX2 and essential RPE genes of the visual cycle among others.

View Article and Find Full Text PDF
Article Synopsis
  • - RdCVF is a protective protein secreted by rod photoreceptors that helps prevent cone cell degeneration, which is crucial in retinitis pigmentosa (RP) leading to blindness.
  • - The study found that RdCVF interacts with Basigin-1, which in turn facilitates glucose entry into cone cells through the GLUT1 transporter, enhancing their survival through aerobic glycolysis.
  • - A specific mutation in RdCVF prevents it from binding to Basigin-1, disrupting glucose uptake and contributing to cone cell death in RP, highlighting a novel way to protect nerve cells by boosting glucose metabolism.
View Article and Find Full Text PDF

Human induced pluripotent stem (hiPS) cells could be used as an unlimited source of retinal cells for the treatment of retinal degenerative diseases. Although much progress has been made in the differentiation of pluripotent stem cells towards different retinal lineages, the production of retinal cells from hiPS cells for therapeutic approaches require the development of easy and standardized protocols. In this chapter, we describe a simple and effective protocol for retinal differentiation of hiPS cells bypassing embryoid body formation and the use of exogenous molecules and substrates.

View Article and Find Full Text PDF