Publications by authors named "Sacha De Carlo"

We characterize a hybrid pixel direct detector and demonstrate its suitability for electron energy loss spectroscopy (EELS). The detector has a large dynamic range, narrow point spread function, detective quantum efficiency ≥ 0.8 even without single electron arrival discrimination, and it is resilient to radiation damage.

View Article and Find Full Text PDF

Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion.

View Article and Find Full Text PDF

3D electron diffraction has reached a stage where the structures of chemical compounds can be solved productively. Instrumentation is lagging behind this development, and to date dedicated electron diffractometers for data collection based on the rotation method do not exist. Current studies use transmission electron microscopes as a workaround.

View Article and Find Full Text PDF

Chemists of all fields currently publish about 50 000 crystal structures per year, the vast majority of which are X-ray structures. We determined two molecular structures by employing electron rather than X-ray diffraction. For this purpose, an EIGER hybrid pixel detector was fitted to a transmission electron microscope, yielding an electron diffractometer.

View Article and Find Full Text PDF

Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures.

View Article and Find Full Text PDF

Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death.

View Article and Find Full Text PDF

In early 2011 FEI Company launched the "Falcon", its first commercial direct electron detector product intended for application in 3-D electron microscopy in the life sciences. In this paper we discuss the principle of direct electron detection and its implementation in Falcon cameras. We describe the signal formation in the sensor and its impact on the detection quantum efficiency (DQE) of the sensor.

View Article and Find Full Text PDF

Large datasets are emerging in many fields of image processing including: electron microscopy, light microscopy, medical X-ray imaging, astronomy, etc. Novel computer-controlled instrumentation facilitates the collection of very large datasets containing thousands of individual digital images. In single-particle cryogenic electron microscopy ("cryo-EM"), for example, large datasets are required for achieving quasi-atomic resolution structures of biological complexes.

View Article and Find Full Text PDF

Negative staining is widely applicable to isolated viruses, protein molecules, macromolecular assemblies and fibrils, subcellular membrane fractions, liposomes and artificial membranes, synthetic DNA arrays, and also to polymer solutions and a variety of nanotechnology samples. Techniques are provided for the preparation of the necessary support films (continuous carbon and holey/perforated carbon). The range of suitable negative stains is presented, with some emphasis on the benefit of using ammonium molybdate and of negative stain-trehalose combinations.

View Article and Find Full Text PDF

Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis.

View Article and Find Full Text PDF

In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E.

View Article and Find Full Text PDF

The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to σ54-RNA polymerase to activate transcription from σ54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the γ-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods.

View Article and Find Full Text PDF

Cryoelectron microscopy (cryo-EM) combined with single-particle reconstruction methods is a powerful technique to study the structure of biological assemblies at molecular resolution (i.e., 3-10 Å).

View Article and Find Full Text PDF

In this review we cover the technical background to negative staining of biomolecules and viruses, and then expand upon the different possibilities and limitations. Topics range from conventional air-dry negative staining of samples adsorbed to carbon support films, the variant termed the "negative staining-carbon film" technique and negative staining of samples spread across the holes of holey-carbon support films, to a consideration of dynamic/time-dependent negative staining. For each of these approaches examples of attainable data are given.

View Article and Find Full Text PDF

Genetic changes lead gradually to altered protein function, making deduction of the molecular basis for activity from a sequence difficult. Comparative studies provide insights into the functional consequences of specific changes. Here we present structural and biochemical studies of NtrC4, a sigma-54 activator from Aquifex aeolicus, and compare it with NtrC1 (a paralog) and NtrC (a homolog from Salmonella enterica) to provide insight into how a substantial change in regulatory mechanism may have occurred.

View Article and Find Full Text PDF

Cryo-negative staining was developed as a complementary technique to conventional cryo-electron microscopy on supramolecular complexes. It allows imaging biological samples in a comparable state of structural preservation to conventional cryo-EM but the staining produces better contrast in accessible areas and allows data recording at lower defocus values. Cryo-negative staining vitrifies biological particles in the presence of a concentrated ammonium molybdate solution at neutral pH.

View Article and Find Full Text PDF

Transcription initiation by the sigma54 form of bacterial RNA polymerase requires hydrolysis of ATP by an enhancer binding protein (EBP). We present SAS-based solution structures of the ATPase domain of the EBP NtrC1 from Aquifex aeolicus in different nucleotide states. Structures of apo protein and that bound to AMPPNP or ADP-BeF(x) (ground-state mimics), ADP-AlF(x) (a transition-state mimic), or ADP (product) show substantial changes in the position of the GAFTGA loops that contact polymerase, particularly upon conversion from the apo state to the ADP-BeF(x) state, and from the ADP-AlF(x) state to the ADP state.

View Article and Find Full Text PDF

Transcription by RNA polymerase II (RNAPII) is a central process in eukaryotic gene regulation. While atomic details exist for the yeast RNAPII, characterization of the human complex lags behind, mostly due to the inability to obtain large quantities of purified material. Although the complexes have the same protein composition and high sequence similarity, understanding of transcription and of transcription-coupled DNA repair (TCR) in humans will require the use of human proteins in structural studies.

View Article and Find Full Text PDF

In two-component signal transduction, an input triggers phosphorylation of receiver domains that regulate the status of output modules. One such module is the AAA+ ATPase domain in bacterial enhancer-binding proteins that remodel the sigma(54) form of RNA polymerase. We report X-ray solution scattering and electron microscopy structures of the activated, full-length nitrogen-regulatory protein C (NtrC) showing a novel mechanism for regulation of AAA+ ATPase assembly via the juxtaposition of the receiver domains and ATPase ring.

View Article and Find Full Text PDF

The general RNA polymerase II transcription factor TFIIE, which is composed of two subunits, has essential roles in both transcription initiation and promoter escape. Electron microscopy analysis of negatively stained human TFIIE showed a large proportion of alpha/beta heterodimers as well as a small proportion of tetramers. Analytical ultracentrifugation, chemical crosslinking, pulldown experiments and cryo-electron microscopy confirmed that TFIIE is a alpha/beta heterodimer in solution.

View Article and Find Full Text PDF

The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension.

View Article and Find Full Text PDF

The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7.

View Article and Find Full Text PDF

An improvement of the trajectory matching algorithm is presented, which is based on the use of the derivative of trajectories and of the projection of experimental sinogram lines in the factor space determined by sinogram lines of projections of a model. The algorithm performance is illustrated by use of different phantom structures, to show the effect of symmetry on trajectory matching. A GroEL complex has also been reconstructed from both cryo-negatively stained and unstained frozen-hydrated samples.

View Article and Find Full Text PDF