Publications by authors named "Saccomanni G"

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), , with that of the CB2R selective orthosteric agonist , both synthesized in our laboratories. The functional examination enabled us to identify , , and as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds.

View Article and Find Full Text PDF

It is well known that G protein-coupled receptors (GPCRs) assume multiple active states. Orthosteric ligands and/or allosteric modulators can preferentially stabilize specific conformations, giving rise to pathway-biased signaling. One of the most promising strategies to expand the repertoire of signaling-selective GPCR activators consists of dualsteric agents, which are hybrid compounds consisting of orthosteric and allosteric pharmacophoric units.

View Article and Find Full Text PDF

The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS) and alterations in metallostasis are common and related hallmarks in several neurodegenerative diseases (NDDs). Nature-based derivatives always represent an attractive tool in MTDL drug design, especially against ROS in NDDs. On this notion, we designed a new series of 8-quinoline-N-substituted derivatives with a natural antioxidant portion (i.

View Article and Find Full Text PDF

1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent β-arrestin2 recruitment.

View Article and Find Full Text PDF

Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel.

View Article and Find Full Text PDF

Hydrogen sulphide (HS) is an endogenous gasotransmitter, largely known as a pleiotropic mediator endowed with antioxidant, anti-inflammatory, pro-autophagic, and neuroprotective properties. Moreover, a strong relationship between HS and aging has been recently identified and consistently, a significant decline of HS levels has been observed in patients affected by Alzheimer's disease (AD). On this basis, the use of HS-donors could represent an exciting and intriguing strategy to be pursued for the treatment of neurodegenerative diseases (NDDs).

View Article and Find Full Text PDF

Several studies demonstrated that cannabinoids reduce tumor growth, inhibit angiogenesis, and decrease cancer cell migration. As these molecules are well tolerated, it would be interesting to investigate the potential benefit of newly synthesized compounds, binding cannabinoid receptors (CBRs). In this study, we describe the synthesis and biological effect of 2-oxo-1,8-naphthyridine-3-carboxamide derivative LV50, a new compound with high CB2 receptor (CB2R) affinity.

View Article and Find Full Text PDF

Although the anticancer properties of extra virgin olive oil (EVOO) extracts have been recognized, the role of single compounds in non-melanoma skin cancer is still unknown. The in vitro chemopreventive and anticancer action of EVOO extracts and oil-derived compounds in non-melanoma skin cancer models were evaluated on cutaneous squamous cell carcinoma cells and on immortalized human keratinocytes stimulated with epidermal growth factor. Preparation of EVOO extracts and isolation of single compounds was carried out by chromatographic methods.

View Article and Find Full Text PDF

In this work, we explored the molecular framework of the known CB1R allosteric modulator PSNCBAM-1 with the aim to generate new bioactive analogs and to deepen the structure-activity relationships of this type of compounds. In particular, the introduction of a NH group between the pyridine ring and the phenyl nucleus generated the amino-phenyl-urea derivative SN15b that behaved as a positive allosteric modulator (PAM), increasing the CB1R binding affinity of the orthosteric ligand CP55,940. The functional activity was evaluated using serum response element (SRE) assay, which assesses the CB1R-dependent activation of the MAPK/ERK signaling pathway.

View Article and Find Full Text PDF

A novel series of variously substituted N-[3-(9H-carbazol-9-yl)-2-hydroxypropyl]-arylsulfonamides has been synthesized and assayed for β-Secretase (BACE1) inhibitory activity. BACE1 is a widely recognized drug target for the prevention and treatment of Alzheimer's Disease (AD). The introduction of benzyl substituents on the nitrogen atom of the arylsulfonamide moiety has so far led to the best results, with three derivatives showing IC values ranging from 1.

View Article and Find Full Text PDF

In this work, we reported the application and validation of an improved high-performance liquid chromatography method coupled with a fluorimetric detector (HPLC-FL) to screen the activity of two heterocyclic derivatives reported as serine palmitoyl transferase (SPT) inhibitors. The analytical conditions were optimized in terms of the derivatization procedure, chromatographic condition, extraction procedure, and method validation according to EMEA guidelines. Once fully optimized, the method was applied to assess the SPT-inhibitory activity of the above-mentioned derivatives and of the reference inhibitor myriocin.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL) inhibitors are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Many MAGL inhibitors are reported in literature; however, most of them showed an irreversible mechanism of action, which caused important side effects. The use of reversible MAGL inhibitors has been only partially investigated so far, mainly because of the lack of compounds with good MAGL reversible inhibition properties.

View Article and Find Full Text PDF

Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti-inflammatory properties. Although its potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro antiproliferative activity of oleocanthal against human malignant melanoma cells.

View Article and Find Full Text PDF

Targeting type-2 cannabinoid receptor (CB2) is considered a feasible strategy to develop new drugs for the treatment of diseases like neuropathic pain, chronic inflammation, neurodegenerative disorders and cancer. Such drugs are devoid of the undesired central side effects that are typically mediated by the CB1 receptor. In this work we synthesized 18 biphenylic carboxamides as new CB2-selective ligands and evaluated their pharmacological profiles.

View Article and Find Full Text PDF

In the present work, we report the synthesis of new aryliodonium salts used as precursors of single-stage nucleophilic (18)F radiofluorination. The corresponding unlabelled fluorinated derivatives showed to be CB2 cannabinoid receptor specific ligands, with Ki values in the low nanomolar range and high CB2/CB1 selectivity. The radiolabelled compound [(18)F]CB91, was successfully formulated for in vivo administration, and its preliminary biodistribution was assessed with microPET/CT.

View Article and Find Full Text PDF

Several recent studies suggest that selective CB2 receptor agonists may represent a valid pharmacological approach in the treatment of various diseases due to the absence of relevant psychoactive side effect. In this study, we synthesized and tested a series of new quinoline-2(1H)-one- and 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine derivatives characterized by a 4-methylcyclohexylamido substituent in position 3 of the heterocyclic nucleus with high CB2 receptor affinity and selectivity. Two compounds showing the best binding and selectivity profile behaved as a full agonist and a partial agonist at the CB2 receptor and induced a concentration-dependent decrease of cell viability on LNCaP, a prostatic cancer cell line expressing CB2 receptor.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL) is a membrane-associated cytosolic serine hydrolase which catalyses the hydrolysis of the endocannabinoid 2-arachidonoylglycerol into arachidonic acid and glycerol. MAGL represents the link between the endocannabinoid and the eicosanoid system indeed its inhibition enhances endocannabinoid signalling and lowers eicosanoid production. Here we present a radioactive-free, sensitive and solid HPLC-UV based method to evaluate MAGL activity by using 4-nitrophenylacetate (4-NPA) as substrate.

View Article and Find Full Text PDF

The CB2 receptor is a therapeutic target of increasing importance for several diseases, including pain, inflammation, neurodegeneration, cancer and osteoporosis. While several compounds showing CB2-selective agonist or inverse agonist properties have been developed, only few CB2 receptor selective neutral antagonists are actually known. Such type of compounds could be useful to study more in depth the role of the CB2 receptor, because they lack the ability to counteract its "constitutive" activity.

View Article and Find Full Text PDF

We have recently identified 1,8-naphthyridin-2(1H)-one-3-carboxamide as a new scaffold very suitable for the development of new CB2 receptor potent and selective ligands. In this paper we describe a number of additional derivatives in which the same central scaffold has been variously functionalized in position 1 or 6. All new compounds showed high selectivity and affinity in the nanomolar range for the CB2 receptor.

View Article and Find Full Text PDF

The relevance of CB2R-mediated therapeutic effects is well-known for the treatment of inflammatory and neuropathic pain and neurodegenerative disorders. In our search for new cannabinoid receptor modulators, we report the optimization of a series of 1,2-dihydro-2-oxopyridine-3-carboxamide derivatives as CB2R ligands. In particular, N-cycloheptyl-5-(4-methoxyphenyl)-1-(4-fluorobenzyl)-pyridin-2(1H)-on-3-carboxamide (17) showed high CB2R affinity (K(i) = 1.

View Article and Find Full Text PDF

Considering the high selectivity at the cannabinoid CB2 receptor of recently designed 1,8-naphthyridine derivatives and the protective role of this receptor in neurological disorders, in this study we investigated the immune-modulatory and anti-inflammatory effects of these compounds as well as their potential properties of intestinal absorption and blood-brain barrier (BBB) permeability. We used peripheral blood mononuclear cells (PBMC) known to express the CB2 receptor. We observed that test compounds, CB13, CB82 and CB91 reduced PBMC proliferation.

View Article and Find Full Text PDF

Several procedures of extraction with solvents for the simultaneous determination of vitamin C and some vitamins belonging to the B group (thiamine, riboflavine, nicotinic acid and nicotinamide) in multivitamin preparations and in artichokes (Cynara cardunculus subsp. scolymus [L.] Hegi) were developed.

View Article and Find Full Text PDF

The efficacy of cannabinoids in the treatment of multiple sclerosis is widely documented; however their use is limited by psychoactivity mainly ascribed to the activation of the cannabinoid receptor CB1. Emerging findings support as alternative strategy in the treatment of neurodegenerative disorders, the application of compounds targeting the CB2 receptor, since likely unrelated to these side effects. Recently, a novel class of compounds, 1,8-naphthyridine, pyridine and quinoline derivatives have been demonstrated to show high CB2 receptor selectivity and affinity versus the CB1 receptor.

View Article and Find Full Text PDF

CB2 receptor ligands are becoming increasingly attractive drugs due to the potential role of this receptor in several physiopathological processes. Using our previously described series of 1,8-naphthyridin-2(1H)-on-3-carboxamides as a lead class, several nitrogen heterocyclic derivatives, characterized by different central cores, were synthesized and tested for their affinity toward the human CB1 and CB2 cannabinoid receptors. The obtained results suggest that the new series of quinolin-2(1H)-on-3-carboxamides, 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides and 1,2-dihydro-2-oxopyridine-3-carboxamides represent novel scaffolds very suitable for the development of promising CB2 ligands.

View Article and Find Full Text PDF