Publications by authors named "Sacchettini J"

Structural genomics seeks to expand rapidly the number of protein structures in order to extract the maximum amount of information from genomic sequence databases. The advent of several large-scale projects worldwide leads to many new challenges in the field of crystallographic macromolecular structure determination. A novel software package called PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) is therefore being developed.

View Article and Find Full Text PDF

Establishment or maintenance of a persistent infection by Mycobacterium tuberculosis requires the glyoxylate pathway. This is a bypass of the tricarboxylic acid cycle in which isocitrate lyase and malate synthase (GlcB) catalyze the net incorporation of carbon during growth of microorganisms on acetate or fatty acids as the primary carbon source. The glcB gene from M.

View Article and Find Full Text PDF

The biophysical properties of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus (BsPFK) have been examined. The mutant, designated W179Y/Y164W, has kinetic and thermodynamic properties similar to the wild-type enzyme. A 2-fold decrease in kcat is observed, and the mutant displays a 3-fold smaller K(0.

View Article and Find Full Text PDF

Amyloid diseases are a large group of a much larger family of misfolding diseases. This group includes pathologies as diverse as Alzheimer's disease, immunoglobulin-light-chain disease, reactive amyloid disease and the familial amyloid polyneuropathies. These diseases are generally incurable at present, although some drugs are known to transiently slow the progression of Alzheimer's disease.

View Article and Find Full Text PDF

VlsE is an outer surface lipoprotein of Borrelia burgdorferi that undergoes antigenic variation through an elaborate gene conversion mechanism and is thought to play a major role in the immune response to the Lyme disease borellia. The crystal structure of recombinant variant protein VlsE1 at 2.3-A resolution reveals that the six variable regions form loop structures that constitute most of the membrane distal surface of VlsE, covering the predominantly alpha-helical, invariant regions of the protein.

View Article and Find Full Text PDF

The human malaria parasite Plasmodium falciparum synthesizes fatty acids using a type II pathway that is absent in humans. The final step in fatty acid elongation is catalyzed by enoyl acyl carrier protein reductase, a validated antimicrobial drug target. Here, we report the cloning and expression of the P.

View Article and Find Full Text PDF

Mycolic acids are major components of the cell wall of Mycobacterium tuberculosis. Several studies indicate that functional groups in the acyl chain of mycolic acids are important for pathogenesis and persistence. There are at least three mycolic acid cyclopropane synthases (PcaA, CmaA1, and CmaA2) that are responsible for these site-specific modifications of mycolic acids.

View Article and Find Full Text PDF

The mevalonate-dependent pathway is used by many organisms to synthesize isopentenyl pyrophosphate, the building block for the biosynthesis of many biologically important compounds, including farnesyl pyrophosphate, dolichol, and many sterols. Mevalonate kinase (MVK) catalyzes a critical phosphoryl transfer step, producing mevalonate 5'-phosphate. The crystal structure of thermostable MVK from Methanococcus jannaschii has been determined at 2.

View Article and Find Full Text PDF

Background: Cardiopulmonary bypass (CPB) is associated with poorly understood alterations in gastrointestinal (GI) perfusion. Intestinal fatty acid binding protein (IFABP), a cytosolic protein uniquely located in mature small-intestinal enterocytes, has been shown to be a sensitive biochemical marker of early intestinal ischemia when assayed in urine. We hypothesized that if significant small-intestinal ischemia occurs with CPB, then urine IFABP levels should be concomitantly elevated.

View Article and Find Full Text PDF

Transthyretin (TTR) is a soluble human plasma protein that can be converted into amyloid by acid-mediated dissociation of the homotetramer into monomers. The pH required for disassembly also results in tertiary structural changes within the monomeric subunits. To understand whether these tertiary structural changes are required for amyloidogenicity, we created the Phe87Met/Leu110Met TTR variant (M-TTR) that is monomeric according to analytical ultracentrifugation and gel filtration analyses and nonamyloidogenic at neutral pH.

View Article and Find Full Text PDF

Background: The crystal structure of precorrin-8x methyl mutase (CobH), an enzyme of the aerobic pathway to vitamin B12, provides evidence that the mechanism for methyl migration can plausibly be regarded as an allowed [1,5]-sigmatropic shift of a methyl group from C-11 to C-12 at the C ring of precorrin-8x to afford hydrogenobyrinic acid.

Results: The dimeric structure of CobH creates a set of shared active sites that readily discriminate between different tautomers of precorrin-8x and select a discrete tautomer for sigmatropic rearrangement. The active site contains a strictly conserved histidine residue close to the site of methyl migration in ring C of the substrate.

View Article and Find Full Text PDF

Many biological recognition processes involve the binding and clustering of ligand-receptor complexes and concomitant signal transduction events. Such interactions have recently been observed in human T cells in which binding and cross-linking of specific glycoprotein counter-receptors on the surface of the cells by an endogenous bivalent carbohydrate binding protein (galectin-1) leads to apoptosis [Pace, K. E.

View Article and Find Full Text PDF

The vesicular stomatitis virus (VSV) octapeptide RGYVYQGL binds to H-2K(b) and triggers a cytotoxic T cell response in mice. A variant peptide, RGYVYEGL (E6) with a glutamic acid for glutamine replacement at position 6 of the VSV peptide, elicits a T cell response with features that are quite different from those elicited by the wild-type VSV peptide. The differences found in the nature of the T cells responding to the E6 peptide include changes in both the V beta elements and the sequences of the complementarity-determining region 3 loops of their TCRs.

View Article and Find Full Text PDF

The outer surface protein C (OspC) is one of the major host-induced antigens of Borrelia burgdorferi, the causative agent of Lyme disease. We have solved the crystal structure of recombinant OspC to a resolution of 2.5 A.

View Article and Find Full Text PDF

Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary.

View Article and Find Full Text PDF

Isocitrate lyase (ICL) plays a pivotal role in the persistence of Mycobacterium tuberculosis in mice by sustaining intracellular infection in inflammatory macrophages. The enzyme allows net carbon gain by diverting acetyl-CoA from beta-oxidation of fatty acids into the glyoxylate shunt pathway. Given its potential as a drug target against persistent infections, we solved its structure without ligand and in complex with two inhibitors.

View Article and Find Full Text PDF

The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase.

View Article and Find Full Text PDF

Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids.

View Article and Find Full Text PDF

TEXTAL is an automated system for building protein structures from electron-density maps. It uses pattern recognition to select regions in a database of previously determined structures that are similar to regions in a map of unknown structure. Rotation-invariant numerical values, called features, of the electron density are extracted from spherical regions in an unknown map and compared with features extracted around regions in maps generated from a database of known structures.

View Article and Find Full Text PDF

Ileal lipid binding protein (ILBP) is a cytosolic lipid-binding protein that binds both bile acids and fatty acids. We have determined the solution structure of porcine ILBP in complex with glycocholate by homonuclear and heteronuclear two-dimensional NMR spectroscopy. The conformation of the protein-ligand complex was determined by restrained energy minimization and simulated annealing calculations after docking the glycocholate ligand into the protein structure.

View Article and Find Full Text PDF

X-ray crystallography is the most widely used method for determining the three-dimensional structures of proteins and other macromolecules. One of the most difficult steps in crystallography is interpreting the electron density map to build the final model. This is often done manually by crystallographers and is very time-consuming and error-prone.

View Article and Find Full Text PDF

The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol.

View Article and Find Full Text PDF

Liver-type fatty acid binding protein (L-FABP) has been proposed to be involved in the transport of fatty acids and peroxisome proliferators from the cytosol into the nucleus for interaction with the peroxisome proliferator-activated receptors (PPARs). On the basis of this premise, we investigated by isothermal titration calorimetry the binding of myristic, stearic, oleic, and docosahexaenoic acids to three orthologous L-FABPs and compared these results to those obtained for several xenobiotics [Wy14,643, bezafibrate, 5,8,11,14-eicosatetraynoic acid (ETYA), and BRL48,482] known for their peroxisome proliferating activity in rodents. Recombinant human, murine, and bovine L-FABPs were analyzed and the thermodynamic data were obtained.

View Article and Find Full Text PDF