Publications by authors named "Sabrina de A Silveira"

Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs.

View Article and Find Full Text PDF

Proteins play a crucial role in organisms in nature. They are able to perform structural, catalytic, transport and defense functions in cells, among others. We understand that a variety of resources do exist to work with protein structural bioinformatics, which perform tasks such as protein modeling, protein docking, protein molecular dynamics, protein interaction, active and binding site prediction and mutation analysis.

View Article and Find Full Text PDF

Proteins are essential macromolecules for the maintenance of living systems. Many of them perform their function by interacting with other molecules in regions called binding sites. The identification and characterization of these regions are of fundamental importance to determine protein function, being a fundamental step in processes such as drug design and discovery.

View Article and Find Full Text PDF

The development of new drugs is a very complex and time-consuming process, and for this reason, researchers have been resorting heavily to drug repurposing techniques as an alternative for the treatment of various diseases. This approach is especially interesting when it comes to emerging diseases with high rates of infection, because the lack of a quickly cure brings many human losses until the mitigation of the epidemic, as is the case of COVID-19. In this work, we combine an in-house developed machine learning strategy with docking, MM-PBSA calculations, and metadynamics to detect potential inhibitors for SARS-COV-2 main protease among FDA approved compounds.

View Article and Find Full Text PDF

Motivation: The discovery of protein-ligand-binding sites is a major step for elucidating protein function and for investigating new functional roles. Detecting protein-ligand-binding sites experimentally is time-consuming and expensive. Thus, a variety of in silico methods to detect and predict binding sites was proposed as they can be scalable, fast and present low cost.

View Article and Find Full Text PDF

Background: Interactions between proteins and non-proteic small molecule ligands play important roles in the biological processes of living systems. Thus, the development of computational methods to support our understanding of the ligand-receptor recognition process is of fundamental importance since these methods are a major step towards ligand prediction, target identification, lead discovery, and more. This article presents visGReMLIN, a web server that couples a graph mining-based strategy to detect motifs at the protein-ligand interface with an interactive platform to visually explore and interpret these motifs in the context of protein-ligand interfaces.

View Article and Find Full Text PDF

Background: A huge amount of data about genomes and sequence variation is available and continues to grow on a large scale, which makes experimentally characterizing these mutations infeasible regarding disease association and effects on protein structure and function. Therefore, reliable computational approaches are needed to support the understanding of mutations and their impacts. Here, we present VERMONT 2.

View Article and Find Full Text PDF

The volume and diversity of biological data are increasing at very high rates. Vast amounts of protein sequences and structures, protein and genetic interactions and phenotype studies have been produced. The majority of data generated by high-throughput devices is automatically annotated because manually annotating them is not possible.

View Article and Find Full Text PDF