Pharmacogenetic variants of the steroid hormone-metabolizing enzyme cytochrome P450 2B6 (CYP2B6) were reported to be associated with breast cancer (BC) risk and prognosis. CYP2B6 expression is inducible by estradiol (E2) but induction was demonstrated only under steroid hormone-deprived medium conditions. Physiological conditions, however, even under endocrinological BC treatment, do not correspond to complete steroid hormone depletion.
View Article and Find Full Text PDFCytochrome P450 mediated substrate metabolism is generally characterized by the formation of reactive intermediates. In vitro and in vivo reaction uncoupling, results in the accumulation and dissociation of reactive intermediates, leading to increased ROS formation. The susceptibility towards uncoupling and altered metabolic activity is partly modulated by pharmacogenomic alleles resulting in amino acid substitutions.
View Article and Find Full Text PDFKetamine and its enantiomer S-ketamine (esketamine) are known to produce rapid-onset antidepressant effects in major depression. Intranasal esketamine has recently come onto the market as an antidepressant. Besides experience from short-term use in anaesthesia and analgesia, the experience with ketamine as long-term medication is rather low.
View Article and Find Full Text PDFThe development of neurodegenerative diseases is associated with cerebral inflammation, which activates resident immune cells of the central nervous system (CNS), namely microglial cells that show an up-regulation of the cannabinoid subtype 2 receptor (CBR) expression. Therefore our work aimed to design and synthesize a radiotracer for the detection of CBR expression by positron emission tomography (PET) allowing an early diagnosis of neurodegenerative diseases. For the development of such a PET tracer, N-alkyl-substituted indole-3-yl-tetramethylcyclopropylketones served as lead structures due to their high CBR potency and selectivity, allowing radiolabeling on the N-alkyl chain.
View Article and Find Full Text PDFAdverse drug reactions (ADRs) are one of the major causes of morbidity and mortality worldwide. It is well-known that individual genetic make-up is one of the causative factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs) are distributed throughout the entire human genome and every patient has a distinct genetic make-up which influences their response to drug therapy.
View Article and Find Full Text PDF