EPR distance determination in the nanometre region has become an important tool for studying the structure and interaction of macromolecules. Arbitrary waveform generators (AWGs), which have recently become commercially available for EPR spectrometers, have the potential to increase the sensitivity of the most common technique, double electron-electron resonance (DEER, also called PELDOR), as they allow the generation of broadband pulses. There are several families of broadband pulses, which are different in general pulse shape and the parameters that define them.
View Article and Find Full Text PDFMultivalent ligand-protein interactions are a key concept in biology mediating, for example, signalling and adhesion. Multivalent ligands often have tremendously increased binding affinities. However, they also can cause crosslinking of receptor molecules leading to precipitation of ligand-receptor complexes.
View Article and Find Full Text PDFMultivalent carbohydrate-lectin interactions are a key concept in biological processes mediating, for example, signaling and adhesion. Binding affinities of multivalent ligands often increase by orders of magnitude compared to a monovalent binding situation. Thus, the design of multivalent ligands as potent inhibitors is a highly active field of research, where knowledge about the binding site topology is crucial.
View Article and Find Full Text PDFNorovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites.
View Article and Find Full Text PDFMetallamacrocylic tetraruthenium complexes were generated by treatment of 1,4-divinylphenylene-bridged diruthenium complexes with functionalized 1,3-benzene dicarboxylic acids and characterized by HR ESI-MS and multinuclear NMR spectroscopy. Every divinylphenylene diruthenium subunit is oxidized in two consecutive one-electron steps with half-wave potential splittings in the range of 250 to 330 mV. Additional, smaller redox-splittings between the +/2+ and 0/+ and the 3+/4+ and 2+/3+ redox processes, corresponding to the first and the second oxidations of every divinylphenylene diruthenium entity, are due to electrostatic effects.
View Article and Find Full Text PDF