Over the past two decades, increased research has highlighted the connection between endosomal trafficking defects and neurodegeneration. The endo-lysosomal network is an important, complex cellular system specialized in the transport of proteins, lipids, and other metabolites, essential for cell homeostasis. Disruption of this pathway is linked to a wide range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and frontotemporal dementia.
View Article and Find Full Text PDFImportance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors.
Objective: To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS.
Background: The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains.
Methods: An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples.
Disruption of retromer-dependent endosomal trafficking is considered pathogenic in late-onset Alzheimer's disease (AD). Here, to investigate this disruption in the intact brain, we turn to a genetic mouse model where the retromer core protein VPS35 is depleted in hippocampal neurons, and then we replete VPS35 using an optimized viral vector protocol. The VPS35 depletion-repletion studies strengthen the causal link between the neuronal retromer and AD-associated neuronal phenotypes, including the acceleration of amyloid precursor protein cleavage and the loss of synaptic glutamate receptors.
View Article and Find Full Text PDFWhether and how the pathogenic disruptions in endosomal trafficking observed in Alzheimer's disease (AD) are linked to its anatomical vulnerability remain unknown. Here, we began addressing these questions by showing that neurons are enriched with a second retromer core, organized around VPS26b, differentially dedicated to endosomal recycling. Next, by imaging mouse models, we show that the trans-entorhinal cortex, a region most vulnerable to AD, is most susceptible to VPS26b depletion-a finding validated by electrophysiology, immunocytochemistry, and behavior.
View Article and Find Full Text PDFEndosomal trafficking has emerged as a defective biological pathway in Alzheimer's disease (AD), and the pathway is a source of cerebrospinal fluid (CSF) protein accumulation. Nevertheless, the identity of the CSF proteins that accumulate in the setting of defects in AD's endosomal trafficking pathway remains unknown. Here, we performed a CSF proteomic screen in mice with a neuronal-selective knockout of the core of the retromer complex VPS35, a master conductor of endosomal traffic that has been implicated in AD.
View Article and Find Full Text PDFSmall vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis.
View Article and Find Full Text PDFDefects in endolysosomal and autophagic functions are increasingly viewed as key pathological features of neurodegenerative disorders. A master regulator of these functions is phosphatidylinositol-3-phosphate (PI3P), a phospholipid synthesized primarily by class III PI 3-kinase Vps34. Here we report that disruption of neuronal Vps34 function in vitro and in vivo impairs autophagy, lysosomal degradation as well as lipid metabolism, causing endolysosomal membrane damage.
View Article and Find Full Text PDFThe present study investigated the growth, longevity and reproductive dynamics of Artemesia longinaris in the southeastern coast of Brazil over a two-year period. Monthly collections were conducted in Ubatuba and Caraguatatuba using a shrimp fishing boat equipped with "double-rig" nets. Each region was divided into 7 sampling stations up to 35 m deep.
View Article and Find Full Text PDFExosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis.
View Article and Find Full Text PDFThis study evaluated the growth and population structure of Xiphopenaeuskroyeri in Babitonga Bay, southern Brazil. Monthly trawls were conducted from July 2010 through June 2011, using a shrimp boat outfitted with double-rig nets, at depths from 5 to 17 m. Differences from the expected 0.
View Article and Find Full Text PDFWe investigated the influence of environmental factors in spatial and temporal distribution of the seabob shrimp Xiphopenaeus kroyeri in Santos Bay and São Vicente Estuary, state of São Paulo, Brazil. Monthly samples were obtained, from May 2008 through April 2010, from four locations in the estuary and four in the bay. No individual was collected in the estuary and this was attributed to the low salinity means recorded in this environment.
View Article and Find Full Text PDFRetromer is a multiprotein complex that trafficks cargo out of endosomes. The neuronal retromer traffics the amyloid-precursor protein (APP) away from endosomes, a site where APP is cleaved into pathogenic fragments in Alzheimer's disease. Here we determined whether pharmacological chaperones can enhance retromer stability and function.
View Article and Find Full Text PDFDefects in endosomal sorting have been implicated in Alzheimer's disease. Endosomal traffic is largely controlled by phosphatidylinositol-3-phosphate, a phosphoinositide synthesized primarily by lipid kinase Vps34. Here we show that phosphatidylinositol-3-phosphate is selectively deficient in brain tissue from humans with Alzheimer's disease and Alzheimer's disease mouse models.
View Article and Find Full Text PDFThe accumulation of Tau into aggregates is associated with key pathological events in frontotemporal lobe degeneration (FTD-Tau) and Alzheimer disease (AD). Recent data have shown that misfolded Tau can be internalized by cells in vitro (Frost, B., Jacks, R.
View Article and Find Full Text PDFCargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for lysosome-related organelle (LRO) biogenesis. PMEL-a component of melanocyte LROs (melanosomes)-is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs.
View Article and Find Full Text PDFThe function of signaling receptors is tightly controlled by their intracellular trafficking. One major regulatory mechanism within the endo-lysosomal system required for receptor localization and down-regulation is protein modification by ubiquitination and downstream interactions with the endosomal sorting complex responsible for transport (ESCRT) machinery. Whether and how these mechanisms operate to regulate endosomal sorting of mammalian G protein-coupled receptors (GPCRs) remains unclear.
View Article and Find Full Text PDFThe objective of the present study was to analyze diel variation in the abundance and size of the seabob shrimp Xiphopenaeus kroyeri in the Ubatuba region, state of São Paulo, during the year 2000. In each season of the year, collections were made in the day and at night on 9 transects at depths ranging from 2 to 40 m. The estimated shrimp amount was of 28,878 individuals.
View Article and Find Full Text PDFMelanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes.
View Article and Find Full Text PDFBackground Information: TSEs (transmissible spongiform encephalopathies) are neurodegenerative disorders affecting humans and animals. PrP(Sc), a conformationally altered isoform of the normal prion protein (PrP(C)), is thought to be the pathogenic agent. However, the biochemical composition of the prion agent is still matter of debate.
View Article and Find Full Text PDFExosomes are membrane vesicles that are released by cells upon fusion of multivesicular bodies with the plasma membrane. Their molecular composition reflects their origin in endosomes as intraluminal vesicles. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins linked to cell type-associated functions.
View Article and Find Full Text PDF