Publications by authors named "Sabrina Shore"

High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell mRNA sequencing is effective in studying cellular differences, but single-cell small RNA sequencing (sc-sRNA-seq) is challenging due to low abundance and lack of consensus sequences.
  • We developed two methods for cell lysis: one chemical-based and the other using on-chip electrical techniques, which help extract small RNAs efficiently.
  • Our approach allows for quick processing (about 6 hours) and successfully detects a wide range of microRNA abundances in individual cells, opening up new avenues for researching cellular heterogeneity.
View Article and Find Full Text PDF

The Cas9/guide RNA (Cas9/gRNA) system is commonly used for genome editing. mRNA expressing Cas9 can induce innate immune responses, reducing Cas9 expression. First-generation Cas9 mRNAs were modified with pseudouridine and 5-methylcytosine to reduce innate immune responses.

View Article and Find Full Text PDF

Next-generation small RNA sequencing is a valuable tool which is increasing our knowledge regarding small noncoding RNAs and their function in regulating genetic information. Library preparation protocols for small RNA have thus far been restricted due to higher RNA input requirements (>10 ng), long workflows, and tedious manual gel purifications. Small RNA library preparation methods focus largely on the prevention or depletion of a side product known as adapter dimer that tends to dominate the reaction.

View Article and Find Full Text PDF

For most sample types, the automation of RNA and DNA sample preparation workflows enables high throughput next-generation sequencing (NGS) library preparation. Greater adoption of small RNA (sRNA) sequencing has been hindered by high sample input requirements and inherent ligation side products formed during library preparation. These side products, known as adapter dimer, are very similar in size to the tagged library.

View Article and Find Full Text PDF

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind with exquisitely high affinity and specificity to target molecules and are thus often referred to as 'nucleic acid' antibodies. Oligonucleotide aptamers are derived through a process of directed chemical evolution called SELEX (Systematic Evolution of Ligands by Exponential enrichment). This chemical equivalent of Darwinian evolution was first described in 1990 by Tuerk & Gold and Ellington & Szostak and has since yielded aptamers for a wide-range of applications, including biosensor technologies, in vitro diagnostics, biomarker discovery, and therapeutics.

View Article and Find Full Text PDF

This unit describes methods used in the analysis of mitochondrial DNA (mtDNA) for forensic and research applications. UNIT describes procedures specifically for forensic casework where the DNA from evidentiary material is often degraded or inhibited. In this unit, protocols are described for quantification of mtDNA before amplification; amplification of the entire control region from high-quality samples as well as procedures for interrogating the whole mitochondrial genome (mtGenome); quantification of mtDNA post-amplification; and, post-PCR cleanup and sequencing.

View Article and Find Full Text PDF

Replicate mass spectrometry (MS) measurements and the use of multiple analytical methods can greatly expand the comprehensiveness of shotgun proteomic profiling of biological samples. However, the inherent biases and variations in such data create computational and statistical challenges for quantitative comparative analysis. We developed and tested a normalized, label-free quantitative method termed the normalized spectral index (SI(N)), which combines three MS abundance features: peptide count, spectral count and fragment-ion (tandem MS or MS/MS) intensity.

View Article and Find Full Text PDF

Lipid membranes structurally define the outer surface and internal organelles of cells. The multitude of proteins embedded in lipid bilayers are clearly functionally important, yet they remain poorly defined. Even today, integral membrane proteins represent a special challenge for current large scale shotgun proteomics methods.

View Article and Find Full Text PDF