Publications by authors named "Sabrina Serpillon"

Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O(2)(-))] and the mechanisms underlying O(2)(-) production in diabetic hearts are not clearly understood.

View Article and Find Full Text PDF

Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.

View Article and Find Full Text PDF

Objectives: The aim of the present study was to analyze whether beta3-adrenoceptors (beta3-ARs) were effectively present and functional in the human internal mammary artery (IMA).

Background: The beta1- and beta2-adrenoceptors classically mediate the relaxant effects of catecholamines in the vessels. In vitro and in vivo studies performed in various animal species described vasodilating effects due to activation of a third beta-ARs subtype (beta3).

View Article and Find Full Text PDF

1 In hypertension, a decrease of the vascular beta-adrenergic relaxation has been described. However, the specific involvement of each beta-adrenoceptor (beta-AR) subtype, in particular the low-affinity state of beta1-AR, has not yet been evaluated. We investigated whether the low-affinity state of beta1-AR-induced relaxation was impaired in Spontaneously Hypertensive Rats (SHR).

View Article and Find Full Text PDF

1. We have previously demonstrated that beta(3)-adrenoceptor (beta(3)-AR) stimulation induces endothelium-dependent vasorelaxation in rat aorta through the activation of an endothelial NO synthase associated with an increase in intracellular cGMP. The aim of the present study was to localise beta(3)-AR to confirm our functional study and to complete the signalling pathway of beta(3)-AR in rat aorta.

View Article and Find Full Text PDF