Targeted killing of tumor cells while protecting healthy cells is the pressing priority in cancer treatment. Lectins that target a specific glycan marker abundant in cancer cells can be valuable new tools for selective cancer cell killing. The lectin Shiga-like toxin 1 B subunit (Stx1B) is an example that specifically binds globotriaosylceramide (CD77 or Gb3), which is overexpressed in certain cancers.
View Article and Find Full Text PDFMicrofluidic diffusional sizing (MDS) is a recent and powerful method for determining the hydrodynamic sizes and interactions of biomolecules and nanoparticles. A major benefit of MDS is that it can report the size of a fluorescently labeled target even in mixtures with complex, unpurified samples. However, a limitation of MDS is that the target itself has to be purified and covalently labeled with a fluorescent dye.
View Article and Find Full Text PDFThe host defense derived peptide was assessed in different model systems with increasing complexity employing the highly aggressive NRAS mutated melanoma metastases cell line MUG-Mel2. Amongst others, fluorescence microscopy and spectroscopy, as well as cell death studies were applied for liposomal, 2D and 3D in vitro models including tumor spheroids without or within skin models and in vivo mouse xenografts. Summarized, MUG-Mel2 cells were shown to significantly expose the negatively charged lipid phosphatidylserine on their plasma membranes, showing they are successfully targeted by RDP22.
View Article and Find Full Text PDFMelanomas are aggressive tumors with a high metastatic potential and an increasing incidence rate. They are known for their heterogeneity and propensity to easily develop therapy-resistance. Nowadays they are one of the most common cancers diagnosed during pregnancy.
View Article and Find Full Text PDFThe study investigates the antitumor effect of two cationic peptides, R-DIM-P-LF11-215 (RDP215) and the D-amino acid variant 9D-R-DIM-P-LF11-215 (9D-RDP215), targeting the negatively charged lipid phosphatidylserine (PS) exposed by cancer cells, such as of melanoma and glioblastoma. Model studies mimicking cancer and non-cancer membranes revealed the specificity for the cancer-mimic PS by both peptides with a slightly stronger impact by the D-peptide. Accordingly, membrane effects studied by DSC, leakage and quenching experiments were solely induced by the peptides when the cancer mimic PS was present.
View Article and Find Full Text PDFTopical drug administration to the oral mucosa proves to be a promising treatment alternative for inflammatory diseases. However, disease-related changes in the cell barrier must be considered when developing such delivery systems. This study aimed at investigating the changes in the lining mucosa caused by inflammation and evaluating the consequences on drug delivery systems such as nanostructured lipid carriers (NLC).
View Article and Find Full Text PDFThe aim of this study was to develop effective and specific anti-cancer drugs based on membrane active peptides. In previous studies we showed that human lactoferricin (hLFcin) derived peptides facilitate specific killing of cancer cells. These antitumor peptides were found by conventional melanoma two-dimensional (2D) cell cultures to induce apoptosis of cancer cells and to specifically target lipid phosphatidylserine located on the outside of cancer cell membranes.
View Article and Find Full Text PDFMelanoma is a leading cause of high mortality that frequently spreads to the brain and is associated with deterioration in quality and quantity of life. Treatment opportunities have been restricted until now and new therapy options are urgently required. Our focus was to reveal the potential heterogeneity of melanoma brain metastasis.
View Article and Find Full Text PDFDi-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity and while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide.
View Article and Find Full Text PDFHost defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity.
View Article and Find Full Text PDFBackground Aims: As angiogenic and lymphangiogenic key players, endothelial cells (ECs) are promising candidates for vascular regenerative therapies. To culture ECs in vitro, fetal calf serum (FCS) is most often used. However, some critical aspects of FCS usage, such as possible internalization of xenogeneic proteins and prions, must be considered.
View Article and Find Full Text PDFDespite favorable advancements in therapy cancer is still not curative in many cases, which is often due to inadequate specificity for tumor cells. In this study derivatives of a short cationic peptide derived from the human host defense peptide lactoferricin were optimized in their selective toxicity towards cancer cells. We proved that the target of these peptides is the negatively charged membrane lipid phosphatidylserine (PS), specifically exposed on the surface of cancer cells.
View Article and Find Full Text PDFTwo types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division.
View Article and Find Full Text PDFHuman amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration.
View Article and Find Full Text PDFBerberine bridge enzyme (BBE) is a paradigm for the class of bicovalently flavinylated oxidases, which catalyzes the oxidative cyclization of (S)-reticuline to (S)-scoulerine. His174 was identified as an important active site residue because of its role in the stabilization of the reduced state of the flavin cofactor. It is also strictly conserved in the family of BBE-like oxidases.
View Article and Find Full Text PDFAlthough much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells.
View Article and Find Full Text PDFThis study was performed in the aim to identify potential targets for the development of novel therapy to treat cancer with poor outcome or treatment efficacy. We show that the negatively charged phospholipid phosphatidylserine (PS) is exposed in the outer leaflet of their plasma membrane not only in tumor cell lines, but also in metastases and primary cultures thereof, which contrasts with a lack of PS exposure by differentiated non-tumorigenic counterparts. Studied tumor cell lines were derived from non-tumorigenic and malignant melanomas, prostate- and renal cancer, glioblastoma and a rhabdomyosarcoma.
View Article and Find Full Text PDFBerberine bridge enzyme (BBE) is a member of the recently discovered family of bicovalently flavinylated proteins. In this group of enzymes, the FAD cofactor is linked via its 8alpha-methyl group and the C-6 atom to conserved histidine and cysteine residues, His-104 and Cys-166 for BBE, respectively. 6-S-Cysteinylation has recently been shown to have a significant influence on the redox potential of the flavin cofactor; however, 8alpha-histidylation evaded a closer characterization due to extremely low expression levels upon substitution.
View Article and Find Full Text PDFBerberine bridge enzyme catalyzes the conversion of (S)-reticuline to (S)-scoulerine by formation of a carbon-carbon bond between the N-methyl group and the phenolic ring. We elucidated the structure of berberine bridge enzyme from Eschscholzia californica and determined the kinetic rates for three active site protein variants. Here we propose a catalytic mechanism combining base-catalyzed proton abstraction with concerted carbon-carbon coupling accompanied by hydride transfer from the N-methyl group to the N5 atom of the FAD cofactor.
View Article and Find Full Text PDF