Members of the Apicomplexa phylum possess specialized secretory organelles that discharge, apically and in a timely regulated manner, key factors implicated in parasite motility, host cell invasion, egress and subversion of host cellular functions. The mechanisms regulating trafficking and apical docking of these secretory organelles are only partially elucidated. Here, we characterized two conserved endosomal trafficking regulators known to promote vesicle transport and/or fusion, HOOK and Fused Toes (FTS), in the context of organelle discharge in Toxoplasma gondii.
View Article and Find Full Text PDFProtein phosphatase 1 (PP1) is a key enzyme for development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors.
View Article and Find Full Text PDFDendritic cells are the most powerful antigen-presenting cells of the immune system. They present exogenous antigens associated with Major Histocompatibility Complex (MHC) Class II molecules through the classical pathway to stimulate CD4+ T cells, or with MHC-I to activate CD8+ T lymphocytes through the cross-presentation pathway. DCs represent one of the main cellular targets during infection by .
View Article and Find Full Text PDFThe unfolded protein response (UPR) has emerged as a central regulator of immune cell responses in several pathologic contexts including infections. However, how intracellular residing pathogens modulate the UPR in dendritic cells (DCs) and thereby affect T cell-mediated immunity remains uncharacterized. Here, we demonstrate that infection of DCs with Toxoplasma gondii (T.
View Article and Find Full Text PDFToxoplasmosis has been previously associated with an increased risk of having schizophrenia in several epidemiological studies. The aim of this prospective study was to examine for the first time a possible association between positive serology to Toxoplasma gondii (T. gondii) and schizophrenia in the Algerian population.
View Article and Find Full Text PDFToxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses.
View Article and Find Full Text PDFThe intracellular events underlying phagocytosis, a crucial event for innate immunity, are still unresolved. In order to test whether the reservoir of membrane required for the formation of the phagocytic pseudopodia is maintained by cortical ezrin, and that its cleavage is a key step in releasing this membrane, the cleavage of cortical ezrin was monitored within living phagocytes (the phagocytically competent cell line RAW264.7) through expressing two ezrin constructs with fluorescent protein tags located either inside the FERM or at the actin-binding domains.
View Article and Find Full Text PDFToxoplasma gondii (Tg), an obligate intracellular parasite of the phylum Apicomplexa, infects a wide range of animals, including humans. A hallmark of Tg infection is the subversion of host responses, which is thought to favor parasite persistence and propagation to new hosts. Recently, a variety of parasite-secreted modulatory effectors have been uncovered in fibroblasts and macrophages, but the specific interplay between Tg and dendritic cells (DCs) is just beginning to emerge.
View Article and Find Full Text PDFPseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) eradication is prevented by the establishment on infection of cellular HIV-1 reservoirs that are not fully characterized, especially in genital mucosal tissues (the main HIV-1 entry portal on sexual transmission). Here, we show, using penile tissues from HIV-1-infected individuals under suppressive combination antiretroviral therapy, that urethral macrophages contain integrated HIV-1 DNA, RNA, proteins and intact virions in virus-containing compartment-like structures, whereas viral components remain undetectable in urethral T cells. Moreover, urethral cells specifically release replication-competent infectious HIV-1 following reactivation with the macrophage activator lipopolysaccharide, while the T-cell activator phytohaemagglutinin is ineffective.
View Article and Find Full Text PDFInt J Med Microbiol
October 2018
Toxoplasma gondii (T. gondii) possesses a highly polarized secretory system, which efficiently assembles de novo micronemes (MIC) and rhoptries (ROP) during parasite replication. Pioneer works have studied the sorting motifs within MIC and ROP proteins, required for their trafficking towards their final destination.
View Article and Find Full Text PDFThe interaction of (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (MR).
View Article and Find Full Text PDFToxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the clathrin adaptor complex TgAP1.
View Article and Find Full Text PDFPhospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives in macrophages (Mφs). There is a need to better understand how Mtb alters cellular processes like phagolysosome biogenesis, a classical determinant of its pathogenesis. A central feature of this bacteria's strategy is the manipulation of Mφ actin.
View Article and Find Full Text PDFThe protein Bcl10 contributes to adaptive and innate immunity through the assembly of a signaling complex that plays a key role in antigen receptor and FcR-induced NF-κB activation. Here we demonstrate that Bcl10 has an NF-κB-independent role in actin and membrane remodeling downstream of FcR in human macrophages. Depletion of Bcl10 impaired Rac1 and PI3K activation and led to an abortive phagocytic cup rich in PI(4,5)P(2), Cdc42, and F-actin, which could be rescued with low doses of F-actin depolymerizing drugs.
View Article and Find Full Text PDFPhagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process.
View Article and Find Full Text PDFThe receptors engaged during recognition and phagocytic uptake of microorganisms and particles influence signaling events and diverse subcellular responses that occur during phagosome formation and maturation. However, pathogens generally have multiple ligands on their surface, making it difficult to dissect the roles of individual receptors during phagocytosis. Moreover, it remains elusive to which extent receptor-ligand interactions and early binding events define the subsequent intracellular fate of phagosomes.
View Article and Find Full Text PDFThe glycosylphosphatidylinositol (GPI) moiety is one of the ways by which many cell surface proteins, such as Gal/GalNAc lectin and proteophosphoglycans (PPGs) attach to the surface of Entamoeba histolytica, the agent of human amoebiasis. It is believed that these GPI-anchored molecules are involved in parasite adhesion to cells, mucus and the extracellular matrix. We identified an E.
View Article and Find Full Text PDFThe Diaphanous-related formin Dia1 nucleates actin polymerization, thereby regulating cell shape and motility. Mechanisms that control the cellular location of Dia1 to spatially define actin polymerization are largely unknown. In this study, we identify the cytoskeletal scaffold protein IQGAP1 as a Dia1-binding protein that is necessary for its subcellular location.
View Article and Find Full Text PDFPhagocytosis plays a major role during the invasive process of the human intestine by the pathogenic amoeba E. histolytica. This parasite is the etiologic agent causing amoebic dysentery, a worldwide disease causing 50 million of clinical cases leading to about 100,000 deaths annually.
View Article and Find Full Text PDFPhagocytosis of human cells is a crucial activity for the virulence of the human parasite Entamoeba histolytica. This protozoan invades and destroys the intestine by killing and phagocytosing epithelial cells, erythrocytes and cells from the immune system. In this study, we used magnetic beads covered with proteins from human serum as a model system to study the early events involved in phagocytosis by E.
View Article and Find Full Text PDFThe mechanical behavior of the human parasite Entamoeba histolytica plays a major role in the invasive process of host tissues and vessels. In this study, we set up an intracellular rheological technique derived from magnetic tweezers to measure the viscoelastic properties within living amoebae. The experimental setup combines two magnetic fields at 90 degrees from each other and is adapted to an inverted microscope, which allows monitoring of the rotation of pairs of magnetic phagosomes.
View Article and Find Full Text PDFCapping followed by uroid formation in Entamoeba histolytica has been implicated in resistance against the host immune response during development of amoebiasis. The amebic actomyosin cytoskeleton is essential for such a process. A protein from the spectrin family co-localizes with the Gal-GalNAc lectin during capping of this surface protein complex.
View Article and Find Full Text PDF