Deadwood is an important structural component in forest ecosystems and plays a significant role in global carbon and nutrient cycling. Relatively little is known about the formation and decomposition of CWD by microbial communities in situ and about the factors controlling the associated processes. In this study, we intensively analyzed the molecular fungal community composition and species richness in relation to extracellular enzyme activity and differences in decomposing sapwood and heartwood of 13 temperate tree species (four coniferous and nine deciduous species, log diameter 30-40 cm and 4 m long) in an artificial experiment involving placing the logs on the forest soil for six years.
View Article and Find Full Text PDFDeadwood represents an important structural component of forest ecosystems, where it provides diverse niches for saproxylic biota. Although wood-inhabiting prokaryotes are involved in its degradation, knowledge about their diversity and the drivers of community structure is scarce. To explore the effect of deadwood substrate on microbial distribution, the present study focuses on the microbial communities of deadwood logs from 13 different tree species investigated using an amplicon based deep-sequencing analysis.
View Article and Find Full Text PDF() , a soil- and lignocellulose-inhabiting sordariomycete (Ascomycota) that can also live as a facultative tree pathogen causing soft rot, belongs to the family Coniochaetaceae. The strain CBS 245.38 sequenced here was assembled into 869 contigs, has a size of 30.
View Article and Find Full Text PDF