Publications by authors named "Sabrina Ingrand"

Sphingolipid-related issues are increasingly discussed to contribute to the neuropathological process of Alzheimer's disease (AD). In this study, gangliosides and related-sphingolipids (ceramides, neutral glycosphingolipids and sphingomyelins) were analyzed in neuroglioma (H4) cells expressing the Swedish mutation of the human amyloid precursor protein (H4APPsw) and compared with those of wild-type control H4 cells. These cells were chosen since H4APPsw cells were previously reported to reproduce well some essential features of AD.

View Article and Find Full Text PDF

Evidence has suggested that ganglioside abnormalities may be linked to the proteolytic processing of amyloid precursor protein (APP) in Alzheimer's disease (AD) and that pharmacological inhibition of ganglioside synthesis may reduce amyloid β-peptide (Aβ) production. In this study, we assessed the usefulness of two well-established glycosphingolipid (GSL) synthesis inhibitors, the synthetic ceramide analog D-PDMP (1-phenyl 2-decanoylamino-3-morpholino-1-propanol) and the iminosugar N-butyldeoxynojirimycin (NB-DNJ or miglustat), as anti-amyloidogenic drugs in a human cellular model of AD. We found that both GSL inhibitors were able to markedly inhibit Aβ production, although affecting differently the APP cleavage.

View Article and Find Full Text PDF

Aims: GSK3β activation in Aβ conditions leading to tau phosphorylation at pathological sites is a well-known phenomenon. However, the serine/tyrosine phosphorylation processes implied in Aβ-induced GSK3β activation and responsible for tau phosphorylation, especially at the GSK3β specific Ser396/Ser404 (PHF-1) site, are still debated.

Main Methods: Experiments were performed on SH-SY5Y cells exposed to 20μM Aβ1-42 in a time ranging from 5min to 8h.

View Article and Find Full Text PDF

Accumulating evidence implicates ganglioside and/or related-sphingolipid disturbance in the pathogenesis of Alzheimer's disease (AD). However, it is not known whether these lipidic alterations are connected with other important features of AD, such as deregulated insulin/Akt/GSK3 signaling. In this study, we have treated neuroglioma cells expressing the double Swedish mutation of human amyloid precursor protein (H4APPsw) with several glycosphingolipid (GSL)-modulating agents, and we have analyzed the impact of the aberrant ganglioside composition on the GSK3 activation state.

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK3β) activity is regulated by phosphorylation processes and regulates in turn through phosphorylation several proteins, including eukaryotic initiation factor 2B (eIF2B). Serine 9 phosphorylation of GSK3β (pGSK3βSer9), usually promoted by activation of the PI3K/Akt survival pathway, triggers GSK3β inhibition. By contrast, tyrosine 216 phosphorylation of GSK3β (pGSK3βTyr216) increases under apoptotic conditions, leading to GSK3β activation.

View Article and Find Full Text PDF

There is evidence linking sphingolipid abnormalities, APP processing, and neuronal death in Alzheimer's disease (AD). We previously reported a strong elevation of ceramide levels in the brain of the APP(SL)/PS1Ki mouse model of AD, preceding the neuronal death. To extend these findings, we analyzed ceramide and related-sphingolipid contents in brain from two other mouse models (i.

View Article and Find Full Text PDF

Altered sphingolipid metabolism plays an emergent role in the etiology of Alzheimer's disease (AD). In this study, we determined the levels of ceramides and other related-sphingolipids (sphingomyelins, sulfatides and galactosylceramides) in the cerebral cortex of an APP(SL)/PS1Ki mouse model of AD. The results demonstrate that ceramides accumulated in the cortex of APP(SL)/PS1Ki mice, but not in PS1Ki mice, whereas all others major sphingolipids (except galactosylceramides) were not altered in comparison with those from age-matched wild-type mice.

View Article and Find Full Text PDF

Inhibition of double-stranded RNA-dependent protein kinase (PKR) represents an interesting strategy for neuroprotection. However, inhibiting this kinase which triggers the apoptotic process could favour in counterpart cell proliferation and tumorigenesis. Here, we use an in vivo model of 7-day-old rat displaying a high activation of brain PKR to investigate the effects of a new PKR inhibitor identified as an oxindole/imidazole derivative (C16).

View Article and Find Full Text PDF

The goals of this work were first to assess whether the lactic acidosis observed in vivo in ischemia may by itself explain the inhibition of protein synthesis described in the literature and second to study the factors controlling the initiation of protein synthesis under lactic acid stress. Primary rat astrocyte cultures exposed to pH 5.25 underwent cell death and a strong inhibition of protein synthesis assessed by [3H]methionine incorporation, which was solely due to acidity of the extracellular medium and was not related to lactate concentrations.

View Article and Find Full Text PDF

In this study, brain gangliosides of different transgenic mouse models of Alzheimer's disease (AD) were analyzed and compared with age-matched wild-type mice. Gangliosides were analyzed in cerebral cortex, a region with extensive A beta plaques, and cerebellum, a non-vulnerable region with no A beta containing plaques. There was a marked increase in simple gangliosides GM2 and GM3 only within the cortex of all mice expressing APP(SL).

View Article and Find Full Text PDF

Acidosis is a ubiquitous feature of cerebral ischemia, and triggers a cascade of biochemical events that results in neuronal injury. The purpose of this study was to evaluate the effects of lactic acidosis on the ganglioside composition, the ceramide and sphingomyelin (SM) levels in rat cortical astrocytes. Primary astrocyte cultures were exposed to lactic acid (pH 5.

View Article and Find Full Text PDF

The premise of neuroprotective therapy for acute ischemic stroke is based upon the possibility to interfere with the cellular ischemic cascade, so the understanding of the mechanisms and consequences of cerebral ischemia is necessary. The relationship between lipid peroxidation and acidosis was investigated in several regions of rat brain following ischemia without reperfusion. Male Wistar rats (280-300 g) were anaesthetised (Ketalar 33 mg/kg and Rompun 6.

View Article and Find Full Text PDF