The increasing torrents of health AI innovations hold promise for facilitating the delivery of patient-centered care. Yet the enablement and adoption of AI innovations in the healthcare and life science industries can be challenging with the rising concerns of AI risks and the potential harms to health equity. This paper describes Ethicara, a system that enables health AI risk assessment for responsible AI model development.
View Article and Find Full Text PDFUsing real-world data from the Academy of Nutrition and Dietetics Health Informatics Infrastructure, we use state-of-the-art clustering techniques to identify 2 phenotypes characterizing the episodes of nutrition care observed in the National Quality Improvement (NQI) registry data set. The 2 phenotypes identified from recorded Nutrition Care Process data in the NQI exhibit a strong correspondence with the clinical expertise of registered dietitian nutritionists. For one of these phenotypes, it was possible to implement state-of-the-art classification techniques to predict the nutrition problem-resolution status of an episode of care.
View Article and Find Full Text PDF