Publications by authors named "Sabrina Hogan"

A significant challenge for chimeric antigen receptor (CAR) T cell therapy against glioblastoma (GBM) is its immunosuppressive microenvironment, which is densely populated by protumoral glioma-associated microglia and macrophages (GAMs). Myeloid immune checkpoint therapy targeting the CD47-signal regulatory protein alpha (SIRPα) axis induces GAM phagocytic function, but CD47 blockade monotherapy is associated with toxicity and low bioavailability in solid tumors. In this work, we engineer a CAR T cell against epidermal growth factor receptor variant III (EGFRvIII), constitutively secreting a signal regulatory protein gamma-related protein (SGRP) with high affinity to CD47.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a deadly brain tumor, and this study focuses on characterizing tumor changes to find targets that could prevent it from coming back after treatment.
  • Researchers analyzed RNA and proteins from tumor samples of patients with primary and recurrent GBM, revealing key differences in gene and protein expression related to synapse development and myelination.
  • The study identified that certain genes and proteins correlated with the time until tumor recurrence, highlighting the role of activated immune cells and suggesting that targeting these cells could help reduce GBM relapse.
View Article and Find Full Text PDF

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce.

View Article and Find Full Text PDF
Article Synopsis
  • This study addresses the lack of predictive biomarkers for patients with metastatic melanoma undergoing anti-PD-1 therapy, emphasizing the clinical need for better indicators of treatment response.
  • Through comprehensive proteomic analysis across multiple serum cohorts, the researchers identified significant proteins and biological processes linked to treatment outcomes, confirming key differences between responders and nonresponders.
  • Ultimately, the study proposes a promising set of 10 serum markers for further investigation and identifies additional markers from primary melanoma tumor cells that could aid in understanding treatment resistance.
View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM.

View Article and Find Full Text PDF

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes.

View Article and Find Full Text PDF

A patient-tailored, ex vivo drug response platform for glioblastoma (GBM) would facilitate therapy planning, provide insights into treatment-induced mechanisms in the immune tumor microenvironment (iTME), and enable the discovery of biomarkers of response. We cultured regionally annotated GBM explants in perfusion bioreactors to assess iTME responses to immunotherapy. Explants were treated with anti-CD47, anti-PD-1, or their combination, and analyzed by multiplexed microscopy [CO-Detection by indEXing (CODEX)], enabling the spatially resolved identification of >850,000 single cells, accompanied by explant secretome interrogation.

View Article and Find Full Text PDF

Purpose: We explored imaging and blood bio-markers for survival prediction in a cohort of patients with metastatic melanoma treated with immune checkpoint inhibition.

Materials And Methods: 94 consecutive metastatic melanoma patients treated with immune checkpoint inhibition were included into this study. PET/CT imaging was available at baseline (Tp0), 3 months (Tp1) and 6 months (Tp2) after start of immunotherapy.

View Article and Find Full Text PDF

Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have activity across many tumor types, but activation of the immune system may also lead to significant, often steroid-refractory immune-related adverse events (irAEs). We sought to determine the activity of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in treatment or prevention of auto-immune irAE in ICI-treated patients.

Methods: Institutional databases from 2 melanoma centers were reviewed for patients treated with ICIs and tocilizumab.

View Article and Find Full Text PDF

Background: Many cancer patients do not obtain clinical benefit from immune checkpoint inhibition. Checkpoint blockade targets T cells, suggesting that tyrosine kinase activity profiling of baseline peripheral blood mononuclear cells may predict clinical outcome.

Methods: Here a total of 160 patients with advanced melanoma or non-small-cell lung cancer (NSCLC), treated with anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed cell death 1 (anti-PD-1), were divided into five discovery and cross-validation cohorts.

View Article and Find Full Text PDF

An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways.

View Article and Find Full Text PDF

Purpose: We assessed the predictive potential of positron emission tomography (PET)/CT-based radiomics, lesion volume, and routine blood markers for early differentiation of pseudoprogression from true progression at 3 months.

Experimental Design: 112 patients with metastatic melanoma treated with immune checkpoint inhibition were included in our study. Median follow-up duration was 22 months.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates genetic and environmental factors influencing the immune response in a large group of melanoma patients, revealing three immune signal subgroups: low, intermediate, and high.
  • Bioinformatic analysis of tumor samples showed that high immune signal tumors are linked to specific pathways, while low immune signal tumors are associated with cell-cycle and metabolism pathways.
  • The research also highlights how factors like MYC gene expression and cigarette smoking can suppress immune responses, ultimately impacting patient survival and response to immunotherapy.
View Article and Find Full Text PDF

Many metastatic melanoma patients experience durable responses to anti-PD1 and/or anti-CTLA4; however, a significant proportion (over 50%) do not benefit from the therapies. In this study, we sought to assess pretreatment liquid biopsies for biomarkers that may correlate with response to checkpoint blockade. We measured the combinatorial diversity evenness of the T-cell receptor (TCR) repertoire (the DE, with low values corresponding to more clonality and lack of TCR diversity) in pretreatment peripheral blood mononuclear cells from melanoma patients treated with anti-CTLA4 ( = 42) or anti-PD1 ( = 38) using a multi-N-plex PCR assay on genomic DNA (gDNA).

View Article and Find Full Text PDF

The recent emergence of cancer immunotherapies initiated a significant shift in the clinical management of metastatic melanoma. Prior to 2011, melanoma patients only had palliative treatment solutions which offered little to no survival benefit. In 2018, with immunotherapy, melanoma patients can now contemplate durable or even complete remission.

View Article and Find Full Text PDF