Background: Low-intensity transcranial focused ultrasound (tFUS) is a brain stimulation approach that holds promise for the treatment of brain-based disorders. Studies in humans have shown that tFUS can successfully modulate perfusion in focal sonication targets, including the amygdala; however, limited research has explored how tFUS impacts large-scale neural networks.
Objective: The aim of the current study was to address this gap and examine changes in resting-state connectivity between large-scale network nodes using a randomized, double-blind, within-subjects crossover study design.
Background: The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively.
Methods: We studied healthy older adult participants ( = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design.
Background: Low intensity, transcranial focused ultrasound (tFUS) is a re-emerging brain stimulation technique with the unique capability of reaching deep brain structures non-invasively.
Objective/hypothesis: We sought to demonstrate that tFUS can selectively and accurately target and modulate deep brain structures in humans important for emotional functioning as well as learning and memory. We hypothesized that tFUS would result in significant longitudinal changes in perfusion in the targeted brain region as well as selective modulation of BOLD activity and BOLD-based functional connectivity of the target region.