Microvascular obstruction (MVO) often occurs in ST-elevation myocardial infarction (STEMI) patients after percutaneous coronary intervention (PCI). Diagnosis and treatment of MVO lack appropriate and established procedures. This study focused on two major points by using an in vitro multiscale flow model, which comprised an aortic root model with physiological blood flow and a microfluidic model of the microcirculation with vessel diameters down to 50 μm.
View Article and Find Full Text PDFMicrovascular Obstruction (MVO) is a common consequence of acute myocardial infarction. MVO is underdiagnosed and treatment is often nonspecific and ineffective. A multi-scale in-vitro benchtop model was established to investigate drug perfusion in MVO affected microcirculation.
View Article and Find Full Text PDFCardiac microvascular obstruction (MVO) associated with acute myocardial infarction (heart attack) is characterized by partial or complete elimination of perfusion in the myocardial microcirculation. A new catheter-based method (CoFI, Controlled Flow Infusion) has recently been developed to diagnose MVO in the catheterization laboratory during acute therapy of the heart attack. A porcine MVO model demonstrates that CoFI can accurately identify the increased hydraulic resistance of the affected microvascular bed.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2019
Extended liver resection results in loss of a large fraction of the hepatic vascular bed, thereby causing abrupt alterations in perfusion of the remnant liver. Mechanisms of hemodynamic adaptation and associated changes in oxygen metabolism after liver resection and the effect of mechanical portal blood flow reduction were assessed. A pig model ( = 16) of extended partial hepatectomy was established that included continuous observation for 24 h under general anesthesia.
View Article and Find Full Text PDFIntroduction: Arteriovenous malformations (AVMs) are characterized by pathological high flow, low resistance connections between arteries and veins. Treatment is critically dependent on correct interpretation of angioarchitectural features. However, some microfistular AVMs do not match the characteristics described in current AVM classification systems.
View Article and Find Full Text PDFPeripheral arterio-venous malformations (pAVMs) are congenital vascular anomalies that require treatment, due to their severe clinical consequences. The complexity of lesions often leads to misdiagnosis and ill-planned treatments. To improve disease management, we developed a computational model to quantify the hemodynamic effects of key angioarchitectural features of pAVMs.
View Article and Find Full Text PDFThe transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays.
View Article and Find Full Text PDFUsing a retrovirus-mediated cDNA expression cloning approach, we identified the grainyhead-like 2 (GRHL2) transcription factor as novel protooncogene. Overexpression of GRHL2 in NIH3T3 cells induced striking morphological changes, an increase in cell proliferation, anchorage-independent growth, and tumor growth in vivo. By combining a microarray analysis and a phylogenetic footprinting analysis with various biochemical assays, we identified the epidermal growth factor receptor family member Erbb3 as a novel GRHL2 target gene.
View Article and Find Full Text PDF