Publications by authors named "Sabrina Forte"

Purpose: To characterise existing knowledge about the design and learning outcomes of education and training programs for supported or shared decision making.

Materials And Methods: A scoping review was performed to identify academic and grey literature, published between January 2006 and February 2022, that reported on the design and/or learning outcomes of supported or shared decision making education or training programs. Eligible literature was mapped across domains of educational design and Kirkpatrick's hierarchy of learning effectiveness, and then qualitatively synthesised using cross-case analysis.

View Article and Find Full Text PDF

We report herein the first molecular characterization of 5'-deoxy-5'-methylthio-adenosine phosphorylase II from Sulfolobus solfataricus (SsMTAPII). The isolated gene of SsMTAPII was overexpressed in Escherichia coli BL21. Purified recombinant SsMTAPII is a homohexamer of 180 kDa with an extremely low Km (0.

View Article and Find Full Text PDF

S-adenosylhomocysteine hydrolase (AdoHcyHD) is an ubiquitous enzyme that catalyzes the breakdown of S-adenosylhomocysteine, a powerful inhibitor of most transmethylation reactions, to adenosine and L-homocysteine. AdoHcyHD from the hyperthermophilic archaeon Pyrococcus furiosus (PfAdoHcyHD) was cloned, expressed in Escherichia coli, and purified. The enzyme is thermoactive with an optimum temperature of 95 degrees C, and thermostable retaining 100% residual activity after 1 h at 90 degrees C and showing an apparent melting temperature of 98 degrees C.

View Article and Find Full Text PDF

The extremely heat-stable 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and affinity chromatography. The recombinant enzyme was subjected to a kinetic analysis including initial velocity and product inhibition studies. The reaction follows an ordered Bi-Bi mechanism and phosphate binding precedes nucleoside binding in the phosphorolytic direction.

View Article and Find Full Text PDF