Publications by authors named "Sabrina Etteri"

Background & Aims: Extracellular adenosine plays a relevant role in regulating intestinal motility and preventing inflammatory processes. Adenosine 3',5'-cyclic monophosphate (cAMP) extruded from cells may be converted to adenosine monophosphate and then to adenosine by ecto-phosphodiesterase and CD73/ecto-5'nucleotidase, respectively, thus representing a source of adenosine. Our purpose was to assess the existence of a functional extracellular cAMP-adenosine pathway in intestinal tissue, obtaining evidence for CD73 expression and evaluating the effect of cAMP on ileum motility.

View Article and Find Full Text PDF

It has been previously demonstrated that 17beta-estradiol (E(2)) inhibits the response of microglia, the resident brain macrophages, to acute injuries in specific brain regions. We here show that the effect of E(2) in acute brain inflammation is widespread and that the hormone reduces the expression of inflammatory mediators, such as monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and TNF-alpha, induced by lipopolysaccharide, demonstrating that microglia are a direct target of estrogen action in brain. Using the APP23 mice, an animal model of Alzheimer's disease reproducing chronic neuroinflammation, we demonstrate that ovary ablation increases microglia activation at beta-amyloid (Abeta) deposits and facilitates the progression of these cells toward a highly reactive state.

View Article and Find Full Text PDF

We have previously shown that 17beta-estradiol (E2) prevents the activation of brain macrophages, i.e. microglia cells, both in vitro and in vivo.

View Article and Find Full Text PDF

Beyond the key role in reproductive and cognitive functions, estrogens have been shown to protect against neurodegeneration associated with acute and chronic injuries of the adult brain. Current hypotheses reconcile this activity with a direct effect of 17beta-estradiol (E2) on neurons. Here we demonstrate that brain macrophages are also involved in E2 action on the brain.

View Article and Find Full Text PDF