The interspecific relationship between functional traits and tree seedling performance can be inconsistent, potentially due to site-to-site or microsite variation in environmental conditions. Studies of seedling traits and performance often focus on above-ground traits, despite the importance of below-ground resource acquisition and biomass allocation to above versus below-ground functions. Here we investigate how varying environmental conditions across sites induce intraspecific variation in organ-level (above-ground, below-ground) and biomass allocation traits, affecting interspecific relationships between these traits and seedling performance.
View Article and Find Full Text PDFMacroclimate drives vegetation distributions, but fine-scale topographic variation can generate microclimate refugia for plant persistence in unsuitable areas. However, we lack quantitative descriptions of topography-driven microclimatic variation and how it shapes forest structure, diversity, and composition. We hypothesized that topographic variation and the presence of the forest overstory cause spatiotemporal microclimate variation affecting tree performance, causing forest structure, diversity, and composition to vary with topography and microclimate, and topography and the overstory to buffer microclimate.
View Article and Find Full Text PDFMycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers.
View Article and Find Full Text PDFPlants influence the abiotic and biotic environment of the rhizosphere, affecting plant performance through plant-soil feedback (PSF). We compared the strength of nutrient and microbe-mediated PSF and its implications for plant performance in domesticated and wild grasses with a fully crossed greenhouse PSF experiment using four inbred maize genotypes ( ssp. , -, -, and ), teosinte ( ssp.
View Article and Find Full Text PDFPlant genotype is recognized to contribute to variations in microbial community structure in the rhizosphere, soil adherent to roots. However, the extent to which the viral community varies has remained poorly understood and has the potential to contribute to variation in soil microbial communities. Here we cultivated replicates of two Zea mays genotypes, parviglumis and B73, in a greenhouse and harvested the rhizobiome (rhizoplane and rhizosphere) to identify the abundance of cells and viruses as well as rhizobiome microbial and viral community using 16S rRNA gene amplicon sequencing and genome resolved metagenomics.
View Article and Find Full Text PDFRoot hairs are considered important for rhizosphere formation, which affects root system functioning. Through interactions with soil microorganisms mediated by root exudation, root hairs may affect the phenotypes and growth of young plants. We tested this hypothesis by integrating results from two experiments: (1) a factorial greenhouse seedling experiment with Zea mays B73-wt and its root-hairless mutant, B73-rth3, grown in live and autoclaved soil, quantifying 15 phenotypic traits, seven growth rates, and soil microbiomes and (2) a semi-hydroponic system quantifying root exudation of maize genotypes.
View Article and Find Full Text PDFOne mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.
View Article and Find Full Text PDFThe Photochemical Reflectance Index (PRI) provides an optical indicator of photosynthetic light-use efficiency, photoprotection, and stress in plants. Although PRI can be applied in remote sensing, its interpretation depends on irradiance, which is hard to obtain from satellite or airborne imagery. To quantify forest photoprotective responses remotely, we developed a framework for modeling and interpreting PRI-light responses of individual trees and species using airborne imaging spectrometry coupled with georeferenced forest inventory data from a temperate broad-leaved forest.
View Article and Find Full Text PDFClimate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models.
View Article and Find Full Text PDFUnderstanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperate-zone lens. Integrating tropical research into biology education is urgently needed to tackle these issues.
View Article and Find Full Text PDFSeedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators.
View Article and Find Full Text PDFTree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size.
View Article and Find Full Text PDFTropical forest regeneration after abandonment of former agricultural land depends critically on the input of tree seeds, yet seed dispersal is increasingly disrupted in contemporary human-modified landscapes. Here, we introduce the concept of seed-rain-successional feedbacks as a deterministic process in which seed rain is shaped by successional dynamics internal to a forest site and that acts to reinforce priority effects. We used a combination of time series and chronosequence approaches to investigate how the quantity and taxonomic and functional composition of seed rain change during succession and to evaluate the strength of seed-rain-successional feedbacks, relative to other deterministic and stochastic mechanisms, in secondary wet forests of Costa Rica.
View Article and Find Full Text PDFResource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting plant-soil feedbacks, but how these feedbacks are constrained by lithology is poorly understood. We investigated the hypothesis that lithological drivers of soil fertility filter plant resource economic strategies in ways that influence the relative fitness of trees with AMF or EMF symbioses in a Bornean rain forest containing species with both mycorrhizal strategies. Using forest inventory data on 1245 tree species, we found that although AMF-hosting trees had greater relative dominance on all soil types, with declining lithological soil fertility EMF-hosting trees became more dominant.
View Article and Find Full Text PDFThe competition-colonization trade-off, by which species can partition spatial niches, is a potentially important mechanism allowing the maintenance of species diversity in plant communities. We examined whether there was evidence for this trade-off among tree species in a subtropical forest and how it correlated with eight functional traits. We developed and estimated a metric for colonization ability that incorporates both fecundity and seed dispersal based on seed trap data and the sizes and distributions of adult trees.
View Article and Find Full Text PDFStress memory refers to the observation that an initial, sub-lethal stress alters plants' responses to subsequent stresses. Previous transcriptome analyses of maize seedlings exposed to a repeated dehydration stress has revealed the existence of transcriptional stress memory in . Whether drought-related physiological responses also display memory and how transcriptional memory translates into physiological memory are fundamental questions that are still unanswered.
View Article and Find Full Text PDFTrees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially explicit, analytical water transport model for stems.
View Article and Find Full Text PDFPlants interact with a diversity of microorganisms, and there is often concordance in their community structures. Because most community-level studies are observational, it is unclear if such concordance arises because of host specificity, in which microorganisms or plants limit each other's occurrence. Using a reciprocal transplant experiment, we tested the hypothesis that host specificity between trees and ectomycorrhizal fungi determines patterns of tree and fungal soil specialisation.
View Article and Find Full Text PDFPolyploidy has played an important role in angiosperm diversification, but how polyploidy contributes to reproductive isolation remains poorly understood. Most work has focused on postzygotic reproductive barriers, and the influence of ploidy differences on prezygotic barriers is understudied. To address these gaps, we quantified hybrid occurrence, interspecific self-compatibility differences, and the contributions of multiple pre- and postzygotic barriers to reproductive isolation between diploid Erythronium mesochoreum (Liliaceae) and its tetraploid congener Erythronium albidum.
View Article and Find Full Text PDFPremise Of The Study: Quantifying variation in functional traits associated with shifts in the species composition of plant communities along resource gradients helps identify environmental attributes important for community assembly. Stomates regulate the balance between carbon assimilation and water status in plants. If environmental attributes affecting photosynthetic water-use efficiency govern species distribution along an edaphic gradient, then adaptive variation in stomatal traits of plant species specializing on different soils should reflect belowground resource availability.
View Article and Find Full Text PDF