Publications by authors named "Sabrina Burschel"

Antibiotic persistence describes the presence of phenotypic variants within an isogenic bacterial population that are transiently tolerant to antibiotic treatment. Perturbations of metabolic homeostasis can promote antibiotic persistence, but the precise mechanisms are not well understood. Here, we use laboratory evolution, population-wide sequencing and biochemical characterizations to identify mutations in respiratory complex I and discover how they promote persistence in Escherichia coli.

View Article and Find Full Text PDF

Cytochrome bd-I oxidase is a terminal reductase of bacterial respiratory chains produced under low oxygen concentrations, oxidative stress, and during pathogenicity. While the bulk of the protein forms transmembrane helices, a periplasmic domain, the Q-loop, is expected to be involved in binding and oxidation of (ubi)quinol. According to the length of the Q-loop, bd oxidases are classified into the S (short)- and the L (long)-subfamilies.

View Article and Find Full Text PDF

Formate hydrogenlyase (FHL) is the main hydrogen-producing enzyme complex in enterobacteria. It converts formate to CO and H via a formate dehydrogenase and a [NiFe]-hydrogenase. FHL and complex I are evolutionarily related and share a common core architecture.

View Article and Find Full Text PDF

Cytochrome bd oxidases are terminal reductases of bacterial and archaeal respiratory chains. The enzyme couples the oxidation of ubiquinol or menaquinol with the reduction of dioxygen to water, thus contributing to the generation of the protonmotive force. Here, we determine the structure of the Escherichia coli bd oxidase treated with the specific inhibitor aurachin by cryo-electron microscopy (cryo-EM).

View Article and Find Full Text PDF

Respiratory complex I plays a central role in cellular energy metabolism coupling NADH oxidation to proton translocation. In humans its dysfunction is associated with degenerative diseases. Here we report the structure of the electron input part of Aquifex aeolicus complex I at up to 1.

View Article and Find Full Text PDF

The NADH:ubiquinone oxidoreductase (respiratory complex I) is the main entry point for electrons into the Escherichia coli aerobic respiratory chain. With its sophisticated setup of 13 different subunits and 10 cofactors, it is anticipated that various chaperones are needed for its proper maturation. However, very little is known about the assembly of E.

View Article and Find Full Text PDF

Tü6028 is known to produce the polyketide antibiotic polyketomycin. The deletion of the oxygenase gene led to a non-polyketomycin-producing mutant. Instead, novel compounds were produced by the mutant, which have not been detected before in the wild type strain.

View Article and Find Full Text PDF

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters.

View Article and Find Full Text PDF