Publications by authors named "Sabrina Biardel"

Rationale: Severe asthma affects a small proportion of asthmatics but represents a significant healthcare challenge. Bronchial thermoplasty (BT) is an interventional treatment approach preconized for uncontrolled severe asthma after considering biologics therapy. It was showed that BT long-lastingly improves asthma control.

View Article and Find Full Text PDF

Introduction: Bronchial thermoplasty is an effective intervention to improve respiratory symptoms and to reduce the rate of exacerbations in uncontrolled severe asthma. A reduction in airway smooth muscle is arguably the most widely discussed mechanisms accounting for these clinical benefits. Yet, this smooth muscle reduction should also translate into an impaired response to bronchodilator drugs.

View Article and Find Full Text PDF

Background: Allergens elicit host production of mediators acting on G-protein-coupled receptors to regulate airway tone. Among these is prostaglandin E2 (PGE2), which, in addition to its role as a bronchodilator, has anti-inflammatory actions. Some patients with asthma develop bronchospasm after the ingestion of aspirin and other nonsteroidal anti-inflammatory drugs, a disorder termed aspirin-exacerbated respiratory disease.

View Article and Find Full Text PDF

The HOX genes are transcription factors that are expressed in coordinated spatiotemporal patterns to ensure normal development. Ectopic expression may instead lead to the development and progression of tumors. Genetic polymorphisms in the regions of four HOX gene clusters were tested for association with lung cancer in 420 cases and 3,151 controls.

View Article and Find Full Text PDF

A fungal protease (Alp1/) from was detected in the airways of subjects with asthma but not controls, which correlated strongly with disease severity, respiratory dysfunction, and steroid use.

View Article and Find Full Text PDF

Rationale: The aim of bronchial thermoplasty is to improve asthma symptoms by reducing central airway smooth muscle mass. Up to now, the reduction of smooth muscle mass has been documented for only 1 group of 10 patients who had 15% or more of their pretreatment total bronchial biopsy area occupied by smooth muscle.

Objectives: To evaluate the effects of bronchial thermoplasty on airway smooth muscle mass and airway collagen deposition in adult patients with asthma, regardless of pretreatment smooth muscle area.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery smooth muscle cell (PASMC) proliferation and suppressed apoptosis. This results in both increase in pulmonary arterial pressure and pulmonary vascular resistance. Recent studies have shown the implication of the signal transducer and activator of transcription 3 (STAT3)/bone morphogenetic protein receptor 2 (BMPR2)/peroxisome proliferator-activated receptor gamma (PPARγ) in PAH.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH.

View Article and Find Full Text PDF

Background: Inflammatory changes such as subepithelial edema and excessive inflammatory cell infiltration have been observed in uvular tissues of obstructive sleep apnea (OSA) subjects. The levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha and interleukin-6 are elevated in the serum of apneic patients and have been proposed as mediators of muscle weakness. TNF-alpha has been shown to affect diaphragm contractility in mice and rabbit in vivo.

View Article and Find Full Text PDF

Epithelial damage is an important pathophysiologic feature of asthma. Bronchial epithelium damage results in release of growth factors such as transforming growth factor (TGF)-beta(1) that may affect epithelial cell proliferation. The objective of our study is to evaluate the importance of TGF-beta(1) in regulating epithelial cell repair in asthma.

View Article and Find Full Text PDF