SF3B proteins form a heptameric complex in the U2 small nuclear ribonucleoprotein, essential for pre-mRNA splicing. Heterozygous pathogenic variants in human SF3B4 are associated with head, face, limb, and vertebrae defects. Using the CRISPR/Cas9 system, we generated mice with constitutive heterozygous deletion of Sf3b4 and showed that mutant embryos have abnormal vertebral development.
View Article and Find Full Text PDFHeterozygous mutations in SNRPB, an essential core component of the five small ribonucleoprotein particles of the spliceosome, are responsible for cerebrocostomandibular syndrome (CCMS). We show that Snrpb heterozygous mouse embryos arrest shortly after implantation. Additionally, heterozygous deletion of Snrpb in the developing brain and neural crest cells models craniofacial malformations found in CCMS, and results in death shortly after birth.
View Article and Find Full Text PDFMaterials for preventing harmful bacterial contamination attract widespread interest in areas that include healthcare, home/personal care products, and crop protection. One approach to achieving this functionality is through the sustained release of antibacterial compounds. To this end, we show how putty-like complex coacervates, formed through the association of poly(allylamine hydrochloride) (PAH) with pentavalent tripolyphosphate (TPP) ions, can provide a sustained antibacterial effect by slowly releasing bactericides.
View Article and Find Full Text PDFMutations in core components of the spliceosome are responsible for a group of syndromes collectively known as spliceosomopathies. Patients exhibit microcephaly, micrognathia, malar hypoplasia, external ear anomalies, eye anomalies, psychomotor delay, intellectual disability, limb, and heart defects. Craniofacial malformations in these patients are predominantly found in neural crest cells-derived structures of the face and head.
View Article and Find Full Text PDFSynaptosomal-associated protein 29 () encodes a member of the SNARE family of proteins implicated in numerous intracellular protein trafficking pathways. maps to the 22q11.2 region and is deleted in 90% of patients with 22q11.
View Article and Find Full Text PDFBackground: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method).
Results: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world.
Objective: To compare outcomes of open and endosurgical neonatal congenital diaphragmatic hernia (CDH) repairs.
Background: Historically a surgical emergency, neonatal CDH repair is now deferred pending stabilization of characteristically labile cardiopulmonary physiology. Usually accomplished via laparotomy, surgical repair may acutely worsen lung function; conversely, by reducing the visceral hernia, surgery might improve it.