Publications by authors named "Sabrin Haddad"

Article Synopsis
  • αδ proteins play a crucial role in regulating calcium channels and synaptic functions, with missense variants in their genes linked to autism spectrum disorder (ASD), although their pathogenic effects remain unclear.
  • Functional characterization of two specific mutations (p.R351T in αδ-1 and p.A275T in αδ-3) showed reduced membrane expression and synaptic localization but did not significantly affect the biophysical properties of calcium channels.
  • The findings suggest that the pathogenic mechanisms related to these mutations may not be tied to traditional channel functions or trans-synaptic signaling, indicating a complex role for αδ proteins in ASD.
View Article and Find Full Text PDF

αδ proteins serve as auxiliary subunits of voltage-gated calcium channels and regulate channel membrane expression and current properties. Besides their channel function, αδ proteins regulate synapse formation, differentiation, and synaptic wiring. Considering these important functions, it is not surprising that CACNA2D1-4, the genes encoding for αδ-1 to -4 isoforms, have been implicated in neurological, neurodevelopmental, and neuropsychiatric disorders.

View Article and Find Full Text PDF

αδ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, αδ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels.

View Article and Find Full Text PDF