Publications by authors named "Sabria Mohamed"

The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions pE,T. The mean vibrational energy excess of the ions was characterized by the parameter T ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions.

View Article and Find Full Text PDF

The dissociation of the anthracene radical cation has been studied using two different methods: imaging photoelectron photoion coincidence spectrometry (iPEPCO) and atmospheric pressure chemical ionization-collision induced dissociation mass spectrometry (APCI-CID). Four reactions were investigated: (R1) C14H10(+•) → C14H9(+) + H, (R2) C14H9(+) → C14H8(+•) + H, (R3) C14H10(+•) → C12H8(+•) + C2H2 and (R4) C14H10(+•) → C10H8(+•) + C4H2. An attempt was made to assign structures to each fragment ion, and although there is still room for debate whether for the C12H8(+•) fragment ion is a cyclobuta[b]naphthalene or a biphenylene cation, our modeling results and calculations appear to suggest the more likely structure is cyclobuta[b]naphthalene.

View Article and Find Full Text PDF