Publications by authors named "Sabri T M Thabet"

In this paper, we investigate the generalized Langevin-Sturm-Liouville differential problems involving Caputo-Atangana-Baleanu fractional derivatives of higher orders with respect to another positive, increasing function denoted by ρ. The fixed point theorems in the framework of Kransnoselskii and Banach are utilized to discuss the existence and uniqueness of the results. In addition, the stability criteria of Ulam-Hyers, generalize Ulam-Hyers, Ulam-Hyers-Rassias, and generalize Ulam-Hyers-Rassias are investigated by non-linear analysis besides fractional calculus.

View Article and Find Full Text PDF

This research manuscript aims to study a novel implicit differential equation in the non-singular fractional derivatives sense, namely Atangana-Baleanu-Caputo ([Formula: see text]) of arbitrary orders belonging to the interval (2, 3] with respect to another positive and increasing function. The major results of the existence and uniqueness are investigated by utilizing the Banach and topology degree theorems. The stability of the Ulam-Hyers ([Formula: see text]) type is analyzed by employing the topics of nonlinear analysis.

View Article and Find Full Text PDF

This research work is devoted to investigating new common fixed point theorems on bipolar fuzzy [Formula: see text]-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integral equations.

View Article and Find Full Text PDF

This manuscript is devoted to a study of the existence and uniqueness of solutions to a mathematical model addressing the transmission dynamics of the coronavirus-19 infectious disease (COVID-19). The mentioned model is considered with a nonsingular kernel type derivative given by Caputo-Fabrizo with fractional order. For the required results of the existence and uniqueness of solution to the proposed model, Picard's iterative method is applied.

View Article and Find Full Text PDF

The current research work is devoted to address some results related to the existence and stability as well as numerical finding of a novel Coronavirus disease (COVID-19) by using a mathematical model. By using fixed point results we establish existence results for the proposed model under Atangana-Baleanu-Caputo (ABC) derivative with fractional order. Further, using the famous numerical technique due to Adams Bashforth, we simulate the concerned results for two famous cities of China known as Wuhan and Huanggang which are interconnected cities.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: