Early detection of Reactive oxygen species (ROS) concentration is very important in cancer diagnosis, pathological examinations, and health screening. Studies show that changes in ROS concentration occurs in a short time, causing irreparable damage to living cells and organs. Miniaturized sensors and microelectrodes are capable of online monitoring of electrochemical reactions both in vitro and in vivo.
View Article and Find Full Text PDFCell therapeutic applications based on induced pluripotent stem cells (iPSCs) appear highly promising and challenging at the same time. Good manufacturing practice (GMP) regulations impose necessary yet demanding requirements for quality and consistency when manufacturing iPSCs and their differentiated progeny. Given the scarcity of accessible GMP iPSC lines, we have established a corresponding production workflow to generate the first set of compliant cell banks.
View Article and Find Full Text PDFHyaluronic acid is composed of repeating sugar units, glucuronic acid and N-acetylglucosamine, which are often associated with increased tumor progression. agglutinin is a potential component that exhibits a high affinity for binding to N-acetylglucosamine. This study aimed to investigate Agglutinin's potential to inhibit the proliferation and migration of prostate cancer cells with high expression of hyaluronic acid through molecular docking and studies.
View Article and Find Full Text PDFBackground: Today, numerous antimicrobial and anticancer properties have been reported for plant lectins due to their ability to bind to carbohydrates. The agglutinin (UDA lectin) is a monomeric, small, and low molecular weight glycoprotein. It has attracted the attention of many researchers for identification, treatment, and other clinical purposes.
View Article and Find Full Text PDFColorectal cancer is the third most common and the second deadliest cancer worldwide. To date, colorectal cancer becomes one of the most important challenges of the health system in many countries. Since the clinical symptoms of this cancer appear in the final stages of the disease and there is a significant golden time between the formation of polyps and the onset of cancer, early diagnosis can play a significant role in reducing mortality.
View Article and Find Full Text PDFIntroduction: The microenvironment of solid tumors such as breast cancer is heterogeneous and complex, containing different types of cell, namely, cancer stem cells and immune cells. We previously reported the immunoregulatory behavior of the human immune cell in a solid tumor microenvironment-like culture under serum starvation stress for 96 h. Here, we examined the effect of this culture-derived solution on breast cancer development in rats.
View Article and Find Full Text PDFBackground: All cell types express long non-coding RNAs (lncRNAs), which have the potential to play a role in carcinogenesis by altering the levels of their expression. Squamous cell carcinoma of the esophagus (ESCC) is a deadly disease with a poor prognosis and a high frequency of lymphatic metastases. Understanding the functional role and signaling pathways of two neighboring lncRNAs, CCAT1 and PVT1, in this oncogene's pathogenesis may help us determine ESCC.
View Article and Find Full Text PDFIn this study, we put forth a new deep neural network framework to predict flow behavior in a coronary arterial network with different properties in the presence of any abnormality like stenosis. An artificial neural network (ANN) model is trained using synthetic data so that it can predict the pressure and velocity within the arterial network. The data required to train the neural network were obtained from the CFD analysis of several geometries of arteries with specific features in ABAQUS software.
View Article and Find Full Text PDFIron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment.
View Article and Find Full Text PDFBackground: Loci controlling DNA double-strand breaks (DSBs) repair play an important role in defending against the harmful health effects of benzene, toluene, ethylbenzene, and xylene (BTEX), but their gene variants may alter their repair capacity. The aim of the current study was to determine the relationship of functional polymorphisms ATM-rs228589 A>T, WRN-rs1800392 G>T and H2AX-rs7759 A>G in DBS repair loci with the abnormal hematological indices in workers who exposed to BTEXs.
Methods: We included 141 cases with one or more abnormal hematological parameters, who had been occupationally exposed to BTEX chemicals and 152 controls with a similar exposure condition but without any abnormal hematological parameters.
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases.
View Article and Find Full Text PDFGastric cancer is the leading cause of cancer-related mortality worldwide. Given the importance of gastric cancer in public health, identifying biomarkers associated with disease onset is an important part of precision medicine. The hedgehog signaling pathway is considered as one of the most significant widespread pathways of intracellular signaling in the early events of embryonic development.
View Article and Find Full Text PDFBrugada syndrome (BrS) is a rare hereditary arrhythmia syndrome that increases an individual's risk for sudden cardiac death (SCD) due to ventricular fibrillation. This disorder is regarded as a notable cause of death in individuals aged less than 40 years, responsible for up to 40% of sudden deaths in cases without structural heart disease, and is reported to be an endemic in Asian countries. Mutations in SCN5A are found in approximately 30% of patients with Brugada syndrome.
View Article and Find Full Text PDFBackground: The present study aimed to investigate and compare the effect of starved fibroblast culture supernatant (SFS), DMEM and normal saline alone or along with LA7 on dexamethasone-treated immunosuppressed Wistar rats.
Methods: After the isolation of fibroblasts from the fresh foreskin of children, it was cultured in serum-free DMEM, and the supernatant collected after 16 hours (16h-SFS). This solution and the other treatments were injected subcutaneously into the rats from each group once daily for 14 days.
Down-regulation of stemness genes expression is important in differentiation therapy against cancer stem cells (CSCs). The aim of this study was to evaluate the Oct4 , Sox2, Nanog, and C-myc expression in rat breast cancer stem cells (LA7) which treated with human ovarian follicular fluid (FF), replicative senescent fibroblast culture supernatant (P14), and 16 h serum starved fibroblast supernatant (16 h-SFS). The cells were exposed to these biological fluids for 24 h, 72 h, and 7 days.
View Article and Find Full Text PDFHeart development is a complex process, tightly regulated by numerous molecular mechanisms. Key components of the regulatory network underlying heart development are transcription factors (TFs) and microRNAs (miRNAs), yet limited investigation of the role of miRNAs in heart development has taken place. Here, we report the first parallel genome-wide profiling of polyadenylated RNAs and miRNAs in a developing murine heart.
View Article and Find Full Text PDFPluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-β pathways.
View Article and Find Full Text PDFThe role of striatin interacting protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2-silenced murine (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild-type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells.
View Article and Find Full Text PDFIt has previously been reported that mouse epiblast stem cell (EpiSC) lines comprise heterogeneous cell populations that are functionally equivalent to cells of either early- or late-stage postimplantation development. So far, the establishment of the embryonic stem cell (ESC) pluripotency gene regulatory network through the widely known chemical inhibition of MEK and GSK3beta has been impractical in late-stage EpiSCs. Here, we show that chemical inhibition of casein kinase 1alpha (CK1alpha) induces the conversion of recalcitrant late-stage EpiSCs into ESC pluripotency.
View Article and Find Full Text PDFBiomaterials play a vital role in the field of regenerative medicine and tissue engineering. To date, a large number of biomaterials have been used in cardiovascular research and application. Recently, biomaterials have held a lot of promise in cardiac stem cell therapy.
View Article and Find Full Text PDFAdenoviral early region 1A (E1A) is a viral gene that can promote cellular proliferation and de-differentiation in mammalian cells, features required for the reprogramming of somatic cells to a pluripotent state. E1A has been shown to interact with OCT4, and as a consequence, to increase OCT4 transcriptional activity. Indeed, E1A and OCT4 are sufficient to revert neuroepithelial hybrids to pluripotency, as demonstrated in previous cell fusion experiments.
View Article and Find Full Text PDFAims: To study the mechanisms of pluripotency induction, we compared gene expression in pluripotent embryonic germ cells (EGCs) and unipotent primordial germ cells (PGCs).
Results: We found 11 genes ≥1.5-fold overexpressed in EGCs.
Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8.
View Article and Find Full Text PDF