Numerous marine oil spill incidents and their environmental catastrophe have raised the concern of the research community and environmental agencies on the topic of the offshore crude oil spill. The oil transport through oil tankers and pipelines has further aggravated the risk of the oil spill. This has led to the necessity to develop an effective, environment-friendly, versatile oil spill clean-up strategy.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2024
The critical impact of sodium-doped molybdenum (MoNa) in shaping the MoSe interfacial layer, influencing the electrical properties of CIGSe/Mo heterostructures, and achieving optimal MoSe formation conditions, leading to improved hetero-contact quality. Notably, samples with a 600-nm-thick MoNa layer demonstrate the highest resistivity (73 μΩcm) and sheet resistance (0.45 Ω/square), highlighting the substantial impact of MoNa layer thickness on electrical conductivity.
View Article and Find Full Text PDFACS Omega
February 2024
Low-temperature combustion paired with the use of carbon-free ammonia and carbon-neutral biofuels is a novel approach for improving performance, reducing greenhouse gases, and reducing regulated emissions. Reactivity-controlled compression ignition (RCCI), a low-temperature combustion technology, dramatically reduces NOx and smoke emissions compared to traditional engines. Ammonia can be projected as a good transit fuel in the journey toward achieving net zero emissions and cleaner energy.
View Article and Find Full Text PDFIn this work, pebbles of higher specific heat than the conventional absorber materials like aluminium or copper are proposed as a absorber in the solar flat plate collector. The proposed collector are integrated into the building design and constructed with masonry. Tests were conducted by varying the operating parameters which influence its performance, like the flow rate of the heat-absorbing medium, and the tilt of the collector using both coated and uncoated pebbles.
View Article and Find Full Text PDFThe present work covers the preparation of biodiesel from jatropha oil through the transesterification process followed by its characterization, and furthermore, performance and emission analyses were done in terms of blending biodiesel with fossil diesel and CuO nanoparticles. Jatropha biodiesel blends (B10, B20, and B30) were chosen for this preliminary investigation based on the observation that B20 outperformed other blends. Next stage B20 with copper oxide (CuO) nanoparticle concentrations of 25, 50, 75, and 50 ppm are used to examine the performance and emission characteristics of a constant speed single cylinder, 4-stroke, 3.
View Article and Find Full Text PDFAdvanced combustion concepts in compression ignition are emerging as one of the most promising solutions to reduce nitrogen oxides (NO) and particle emissions without sacrificing fuel efficiency. Among many advanced combustion concepts, reactive controlled compression ignition (RCCI) can achieve a wider working range. In this study, to implement RCCI operation, ammonia gas is introduced through the manifold as a low-reactive fuel, and biodiesel is injected directly as a high-reactivity fuel with a 40:60 energy ratio.
View Article and Find Full Text PDFNano-enhanced phase change materials are highly employed for an enhanced heat-transfer process. The current work reports that the thermal properties of solar salt-based phase change materials were enhanced with carbon nanotubes (CNTs). Solar salt (60:40 of NaNO/KNO) with a phase change temperature and enthalpy of 225.
View Article and Find Full Text PDFSince the discovery of petrol-based products, a surge in energy-requiring equipment has been established across the world. Recent depletion of the existing crude oil resources has motivated researchers to opt for and analyze potential fuels that could potentially provide a cost-effective and sustainable solution. The current study selects a waste plant known as through which biodiesel is generated, and its blends are tested in diesel engines for feasibility.
View Article and Find Full Text PDFRefrigeration systems are complex, non-linear, multi-modal, and multi-dimensional. However, traditional methods are based on a trial and error process to optimize these systems, and a global optimum operating point cannot be guaranteed. Therefore, this work aims to study a two-stage vapor compression refrigeration system (VCRS) through a novel and robust hybrid multi-objective grey wolf optimizer (HMOGWO) algorithm.
View Article and Find Full Text PDFDistilled water and aqueous fullerene nanofluids having concentrations of 0.02, 0.2, and 0.
View Article and Find Full Text PDFIn this paper, the impact of dust deposition on solar photovoltaic (PV) panels was examined, using experimental and machine learning (ML) approaches for different sizes of dust pollutants. The experimental investigation was performed using five different sizes of dust pollutants with a deposition density of 33.48 g/m on the panel surface.
View Article and Find Full Text PDFThe combination of various methods of increasing evaporation rate can highly impact the performance of solar desalination. This investigation aims to find the impact of using evacuated tubes solar collector, perforated fins, and pebbles on the performance enhancement of a solar still. Simultaneously six-evacuated-tube solar collector to raise the evaporation rate of the system, the perforated fins to increase the heat transfer surface between water and absorber, and the immersed pebbles stone in the water to keep the high water temperature at low solar radiation were considered.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2022
Operational energy use and energy-based GHG emissions of air-conditioning in the building sector are increasing aggressively due to occupants' higher thermal and visual comfort aspirations. Window glazing is the critical building component that affects the thermal performance of the conditioned space. The existing glazing in the buildings allows huge heat gain/loss, leading to additional energy requirements for HVAC systems.
View Article and Find Full Text PDFA strategy is proposed for the design of wall envelopes to improve unsteady thermal performance in non-air-conditioned buildings and to reduce energy costs in air-conditioned buildings. The thermophysical properties of building materials (e.g.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2021
This work aims to enhance the energy cost-saving potential of conventional mud-brick by including natural waste materials as insulators. The solid waste materials considered for mud bricks are rice husk, sawdust, coir pith, and fly ash. This work investigates the structural and thermoeconomic performance of four types of insulated mud bricks and three roofs of ferrocement, clay, and ceramic materials.
View Article and Find Full Text PDFThe main aim of this present investigation is to evaluate performance and environmental impact analysis of various novel mixture refrigerants as R22 replacements theoretically. Refrigerants with lower global warming potential (GWP) can be adequate for bringing down emissions which are concerned for air conditioners. In this investigation, twenty-seven refrigerants were developed at several compositions.
View Article and Find Full Text PDFBuilding roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions.
View Article and Find Full Text PDF