The genus Grewia are well-known for their medicinal properties and are widely used in traditional remedies due to their rich phytochemical composition and potential health benefits. This study isolated and characterized five endophytic fungi from Grewia lasiocarpa E. Mey.
View Article and Find Full Text PDFThe Pseudomonas aeruginosa LasR quorum sensing system (QSS) is central to regulating the expression of several pathogenicity factors. Also, while seed- and/or plant-derived products have been investigated as QSS regulators, the impact of Helianthus annuus (Pannar sunflower seed cultivars) extracts and metabolites as LasR modulators remain underexplored. Thus, this study focused on the untargeted metabolomic profiling (Liquid Chromatography-Mass Spectrometry), in vitro and in silico (docking, pharmacokinetics, dynamic simulation) bioprospection of Pannar seed cultivars' extracts and metabolites as LasR modulators.
View Article and Find Full Text PDFCancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), a key immune response regulator implicated in cancer and autoimmune diseases. We started by screening seven (7) natural compounds against the activities of PTPN22 in vitro.
View Article and Find Full Text PDFis a bacterial pathogen of considerable significance in public health, capable of inducing a diverse range of infectious diseases. One of the most notorious mechanisms used by to survive and colonize the site of infection is its ability to form biofilms. Diflunisal, a non-steroidal anti-inflammatory drug (NSAID), is a known inhibitor of the Agr system in , which is key in regulating biofilm formation.
View Article and Find Full Text PDFChitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA.
View Article and Find Full Text PDFBackground: Virome studies on birds, including chickens are relatively scarce, particularly from the African continent. Despite the continuous evolution of RNA viruses and severe losses recorded in poultry from seasonal viral outbreaks, the information on RNA virome composition is even scantier as a result of their highly unstable nature, genetic diversity, and difficulties associated with characterization. Also, information on factors that may modulate the occurrence of some viruses in birds is limited, particularly for domesticated birds.
View Article and Find Full Text PDFInfections caused by multidrug-resistant Streptococcus pneumoniae remain the leading cause of pneumonia-related deaths in children < 5 years globally, and mutations in penicillin-binding protein (PBP) 2 × have been identified as the major cause of resistance in the organism to beta-lactams. Thus, the development of new modulators with enhanced binding of PBP2x is highly encouraged. In this study, phenolics, due to their reported antibacterial activities, were screened against the active site of PBP2x using structure-based pharmacophore and molecular docking techniques, and the ability of the top-hit phenolics to inhibit the active and allosteric sites of PBP2x was refined through 120 ns molecular dynamic simulation.
View Article and Find Full Text PDFBackground: The novel coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Data from the COVID-19 clinical control case studies showed that this disease could also manifest in patients with underlying microbial infections such as aspergillosis. The current study aimed to determine if the Aspergillus (A.
View Article and Find Full Text PDFObesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is characterized by insulin resistance and/or defective insulin production in the human body. Although the antidiabetic action of corn silk (CS) is well-established, the understanding of the mechanism of action (MoA) behind this potential is lacking. Hence, this study aimed to elucidate the MoA in different samples (raw and three extracts: aqueous, hydro-ethanolic, and ethanolic) as a therapeutic agent for the management of T2DM using metabolomic profiling and computational techniques.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has affected more than 650 million people and resulted in over 6.8 million deaths. Notably, the disease could co-manifest with microbial infections, like cryptococcosis, which also presents as a primary lung infection.
View Article and Find Full Text PDFPurpose: The therapeutic use of oral hypoglycaemic agents in the management of type-2 diabetes mellitus (T2DM) is without adverse effects; thus, calls for alternative and novel candidates from natural products in medicinal plants.
Method: The study explored molecular docking and molecular dynamics (MD) simulation approaches to identify key antidiabetic metabolites from .
Results: Molecular docking results identified four and/or five best compounds against each target enzyme (alpha-glucosidase, dipeptidyl peptidase-IV, aldose reductase, and protein tyrosine phosphatase-1B (PTP-1B)) implicated in diabetes.
has found its indigenous relevance in the management of diseases including but not limited to diabetes mellitus, tuberculosis, fever, ulcers, pain, worm manifestation, pneumonia, skin ailments, infectious diseases, sickle cell anaemia, hence, a review of its indigenous knowledge, ethnopharmacological and nutritional benefits was undertaken. Information used for the review was sourced from popular scientific databases (Google Scholar, PubMed, Science Direct, Web of Science, BioMed Central, JSTOR, African Plant, Global Biodiversity Information and others), conference proceedings, dissertations or theses, chapters in books, edited books, and journal collections. The materials obtained from 121 scientific documents targeting majorly between 1994 and 2023 established the presence of major secondary metabolites (such as polyphenols, flavonoids, saponins, alkaloids, etc.
View Article and Find Full Text PDFEven though the nutritional and economic values of (tomato) are substantially impacted by microbial spoilage, the available data on its microbial community, particularly during spoilage, are limited and have primarily been characterized using conventional culture-dependent methods. This study employed a targeted high-throughput next-generation sequencing method to longitudinally characterize the microbial diversity of two South African tomato cultivars (jam and round) at varied storage intervals (1, 6, and 12 days). Throughout the storage period, the bacterial communities of the two cultivars were more diverse than the fungal communities.
View Article and Find Full Text PDFRotaviruses have continued to be the primary cause of acute dehydrating diarrhoea in children under five years of age despite the global introduction of four World Health Organization (WHO) prequalified oral vaccines in over 106 countries. Currently, no medication is approved by the Food and Drug Administration (FDA) specifically for treating rotavirus A-induced diarrhoea. Consequently, it is important to focus on developing prophylactic and curative therapeutics to combat rotaviral infections.
View Article and Find Full Text PDFSci Rep
September 2023
An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C.
View Article and Find Full Text PDFDespite the existence of some vaccines, SARS-CoV-2 (S-2) infections persist for various reasons relating to vaccine reluctance, rapid mutation rate, and an absence of specific treatments targeted to the infection. Due to their availability, low cost and low toxicity, research into potentially repurposing phytometabolites as therapeutic alternatives has gained attention. Therefore, this study explored the antiviral potential of metabolites of some medicinal plants [, and (Sesame plant)] identified using liquid chromatography-mass spectrometry (LCMS) as possible inhibitory agents against the S-2 main protease (S-2 MP) and RNA-dependent RNA polymerase (RP) using computational approaches.
View Article and Find Full Text PDFMalaria is a devastating disease, and its management is only achieved through chemotherapy. However, resistance to available medication is still a challenge; therefore, there is an urgent need for the discovery and development of therapeutics with a novel mechanism of action to counter the resistance scourge consistent with the currently available antimalarials. Recently, plasmepsin V was validated as a therapeutic target for the treatment of malaria.
View Article and Find Full Text PDFPrompt detection of viral respiratory pathogens is crucial in managing respiratory infection including severe acute respiratory infection (SARI). Metagenomics next-generation sequencing (mNGS) and bioinformatics analyses remain reliable strategies for diagnostic and surveillance purposes. This study evaluated the diagnostic utility of mNGS using multiple analysis tools compared with multiplex real-time PCR for the detection of viral respiratory pathogens in children under 5 years with SARI.
View Article and Find Full Text PDF(sunflower) is a globally important oilseed crop whose survival is threatened by various pathogenic diseases. Agrochemical products are used to eradicate these diseases; however, due to their unfriendly environmental consequences, characterizing microorganisms for exploration as biocontrol agents are considered better alternatives against the use of synthetic chemicals. The study assessed the oil contents of 20 sunflower seed cultivars using FAMEs-chromatography and characterized the endophytic fungi and bacteria microbiome using Illumina sequencing of fungi ITS 1 and bacteria 16S (V3-V4) regions of the rRNA operon.
View Article and Find Full Text PDFClinically significant pathogens such as evade the effects of antibiotics using quorum sensing (QS) systems, making antimicrobial resistance (AMR) a persistent and potentially fatal global health issue. Hence, QS has been identified as a novel therapeutic target for identifying novel drug candidates against , and plant-derived products, including essential oils, have been demonstrated as effective QS modulators. This study assessed the antipathogenic efficacy of essential oils from two sunflower cultivars (AGSUN 5102 CLP and AGSUN 5106 CLP) against ATCC 27853 in vitro and in silico.
View Article and Find Full Text PDFAntibacterial resistance to β-lactams in microorganisms has been attributed majorly to alterations in penicillin-binding proteins (PBPs) coupled with β-lactams' inactivation by β-lactamase. Consequently, the identification of a novel class of therapeutics with improved modulatory action on the PBPs is imperative and plant secondary metabolites, including phenolics, have found relevance in this regard. For the first time in this study, the over 10,000 phenolics currently known were computationally evaluated against PBP3 of , a superbug implicated in several nosocomial infections.
View Article and Find Full Text PDFThis study computationally screened three key compounds (vanillin (VAN), oxophoebine (OPB), and dihydrochalcone (DHC)) derived from (Guinea pepper), a medicinal plant with known antiviral activity, against key druggable measles virus (MV) proteins (fusion protein (FUP), haemagglutinin protein (HMG), and phosphoprotein (PSP)). Each molecular species was subjected to a 100 ns molecular dynamics (MD) simulation following docking, and a range of postdynamic parameters including free binding energy and pharmacokinetic properties were determined. The docking scores of the resulting OPB-FUP (-5.
View Article and Find Full Text PDFViral metagenomics is increasingly applied in viral detection and virome characterization. Different extraction and enrichment techniques may be adopted, however, reports on their effective influence on viral recovery is often conflicting. Using a three step enrichment steps, the effect of three extraction kits and the influence of DNase treatment with or without rRNA removal for respiratory RNA virus recovery from nasopharyngeal swab samples was evaluated.
View Article and Find Full Text PDF