Publications by authors named "Sabine Wislet"

The p75 neurotrophin receptor (p75), also known as low-affinity nerve growth factor, belongs to the tumor necrosis factor family of receptors. p75 is widely expressed in the nervous system during the development, as well as, in the neural crest population, since p75 has been described as ubiquitously expressed and considered as a neural crest marker. Neural crest cells (NCCs) constitute an transient population accurately migrating and invading, with precision, defined sites of the embryo.

View Article and Find Full Text PDF

Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow.

View Article and Find Full Text PDF

SV2A is a glycoprotein present in the membranes of most synaptic vesicles. Although it has been highly conserved throughout evolution, its physiological role remains largely unknown. Nevertheless, Levetiracetam, a very effective anti-epileptic drug, has been recently demonstrated to bind to SV2A.

View Article and Find Full Text PDF

In recent years, medication-related osteonecrosis of the jaw (MRONJ) became an arising disease due to the important antiresorptive drug prescriptions to treat oncologic and osteoporotic patients, as well as the use of new antiangiogenic drugs such as VEGF antagonist. So far, MRONJ physiopathogenesis still remains unclear. Aiming to better understand MRONJ physiopathology, the first objective of this review would be to highlight major molecular mechanisms that are known to be involved in bone formation and remodeling.

View Article and Find Full Text PDF

Introduction: Stem cells from adult tissues were considered for a long time as promising tools for regenerative therapy of neurological diseases, including spinal cord injuries (SCI). Indeed, mesenchymal (MSCs) and neural crest stem cells (NCSCs) together constitute the bone marrow stromal stem cells (BMSCs) that were used as therapeutic options in various models of experimental SCI. However, as clinical approaches remained disappointing, we thought that reducing BMSC heterogeneity should be a potential way to improve treatment efficiency and reproducibility.

View Article and Find Full Text PDF

Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs).

View Article and Find Full Text PDF

Spinal cord injuries remain a critical issue in experimental and clinical research nowadays, and it is now well accepted that the immune response and subsequent inflammatory reactions are of significant importance in regulating the damage/repair balance after injury. The role of macrophages in such nervous system lesions now becomes clearer and their contribution in the wound healing process has been largely described in the last few years. Conversely, the contribution of neutrophils has traditionally been considered as detrimental and unfavorable to proper tissue regeneration, even if there are very few studies available on their precise impact in spinal cord lesions.

View Article and Find Full Text PDF