Publications by authors named "Sabine Stallforth"

Medication optimization is a common component of the treatment strategy in patients with Parkinson's disease. As the disease progresses, it is essential to compensate for the movement deterioration in patients. Conventionally, examining motor deterioration and prescribing medication requires the patient's onsite presence in hospitals or practices.

View Article and Find Full Text PDF

Background: Exercise therapy is considered effective for the treatment of motor impairment in patients with Parkinson's disease (PD). During the COVID-19 pandemic, training sessions were cancelled and the implementation of telerehabilitation concepts became a promising solution. The aim of this controlled interventional feasibility study was to evaluate the long-term acceptance and to explore initial effectiveness of a digital, home-based, high-frequency exercise program for PD patients.

View Article and Find Full Text PDF

Background: Bradykinesia and rigidity are prototypical motor impairments of Parkinson disease (PD) highly influencing everyday life. Exercise training is an effective treatment alternative for motor symptoms, complementing dopaminergic medication. High frequency training is necessary to yield clinically relevant improvements.

View Article and Find Full Text PDF

Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline.

View Article and Find Full Text PDF

Background: The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders.

Methods: Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities.

View Article and Find Full Text PDF

The ability to maintain information online beyond sensory stimulation is regarded as a key contribution of working memory to goal-directed behaviour. It is widely accepted that sustained neural activity is a key mechanism of stimulus maintenance, but it is unclear to what extent the neural generators of sustained activity change from stimulus-encoding to maintenance. Using event-related potentials in humans, we show that, in a delayed match-to-sample task, slow shifts over parieto-occipital electrode sites had a different topography and polarity during encoding and delay maintenance of images depicting scenes.

View Article and Find Full Text PDF

Age-related dysfunction in dopaminergic neuromodulation is assumed to contribute to age-associated memory impairment. However, to date there are no in vivo data on how structural parameters of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic projections, relate to memory performance in healthy young and older adults. We investigated this relationship in a cross-sectional study including data from the hippocampus and frontal white matter (FWM) and also assessing working memory span and attention.

View Article and Find Full Text PDF

Normal aging is associated with neuronal loss in the dopaminergic midbrain (substantia nigra/ventral tegmental area, SN/VTA), a region that has recently been implicated in processing novel stimuli as part of a mesolimbic network including the hippocampus. Here, we quantified age-related structural degeneration of the mesolimbic system using magnetization transfer ratio (MTR) and correlated it with mesolimbic hemodynamic responses (HRs) to stimulus novelty. Twenty-one healthy older adults between 55 and 77 years performed a visual oddball paradigm allowing to distinguish mesolimbic HRs to novelty from rareness, negative emotional valence, and targetness using functional magnetic resonance imaging.

View Article and Find Full Text PDF

The pro-inflammatory cytokine tumor necrosis factor (TNF)-alpha is an important mediator in hyperalgesia, nerve injury, and regeneration. Here, we used mice deficient of TNF receptor (TNFR) 1 or 2 to investigate the role of TNF signaling via receptor in each pain behavior and nerve de- and regeneration after chronic constriction injury (CCI) of the sciatic nerve. We found an absence of thermal hyperalgesia in mice deficient of TNFR1 and a reduction in mechanical and cold allodynia in mice deficient of TNFR1 or TNFR2 compared with wild-type mice.

View Article and Find Full Text PDF