Publications by authors named "Sabine Seuter"

Human 5-lipoxygenase (5-LO) is the key enzyme of leukotriene biosynthesis, mostly expressed in leukocytes and thus a crucial component of the innate immune system. In this study, we show that 5-LO, besides its canonical function as an arachidonic acid metabolizing enzyme, is a regulator of gene expression associated with euchromatin. By Crispr-Cas9-mediated 5-LO knockout (KO) in MonoMac6 (MM6) cells and subsequent RNA-Seq analysis, we identified 5-LO regulated genes which could be clustered to immune/defense response, cell adhesion, transcription and growth/developmental processes.

View Article and Find Full Text PDF

Spatial genome organization is tightly controlled by several regulatory mechanisms and is essential for gene expression control. Nuclear receptors are ligand-activated transcription factors that modulate physiological and pathophysiological processes and are primary pharmacological targets. DNA binding of the important loop-forming insulator protein CCCTC-binding factor (CTCF) was modulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3).

View Article and Find Full Text PDF

The transcription factor vitamin D receptor (VDR) is the high affinity nuclear target of the biologically active form of vitamin D (1,25(OH)D). In order to identify pure genomic transcriptional effects of 1,25(OH)D, we used VDR cistrome, transcriptome and open chromatin data, obtained from the human monocytic cell line THP-1, for a novel hierarchical analysis applying three bioinformatics approaches. We predicted 75.

View Article and Find Full Text PDF

The molecular basis of vitamin D signaling implies that the metabolite 1α,25-dihydroxyvitamin D (1,25(OH)D) of the secosteroid vitamin D activates the transcription factor vitamin D receptor (VDR), which in turn modulates the expression of hundreds of primary vitamin D target genes. Since the evolutionary role of nuclear receptors, such as VDR, was the regulation of cellular metabolism, the control of calcium metabolism became the primary function of vitamin D and its receptor. Moreover, the nearly ubiquitous expression of VDR enabled vitamin D to acquire additional physiological functions, such as the support of the innate immune system in its defense against microbes.

View Article and Find Full Text PDF

The myeloid master regulator CCAAT enhancer-binding protein alpha (CEBPA) is known as a pioneer factor. In this study, we report the CEBPA cistrome of THP-1 human monocytes after stimulation with the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D (1,25(OH)D) for 2, 8 and 24 h. About a third of the genomic VDR binding sites co-located with those of CEBPA.

View Article and Find Full Text PDF

In the vitamin D intervention study VitDbol (NCT02063334) blood samples were drawn directly before an oral bolus (2000 μg vitamin D) and 24 h later. The focus of phase II of VitDbol was the transcriptome-wide analysis of the effects of vitamin D gene expression in human peripheral blood mononuclear cells (PBMCs). All five participants responded in an individual fashion to the bolus by increases in serum levels of the vitamin D metabolites 25-hydroxyvitamin D (25(OH)D) and 1α,25-dihydroxyvitamin D (1,25(OH)D).

View Article and Find Full Text PDF

The micronutrient vitamin D significantly modulates the human epigenome via enhancing genome-wide the rate of accessible chromatin and vitamin D receptor (VDR) binding. This study focuses on histone marks of active chromatin at promoter and enhancer regions and investigates, whether these genomic loci are sensitive to vitamin D. The epigenome of THP-1 human monocytes contains nearly 23,000 sites with H3K4me3 histone modifications, 550 of which sites are significantly (p < 0.

View Article and Find Full Text PDF

In vitro cell culture studies showed that the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D, significantly (p < 0.05) affects the human epigenome at thousands of genomic loci. Phase II of the VitDbol vitamin D intervention trial (NCT02063334) involved a proof-of-principle study of one individual, who was exposed three times every 28 days to an oral bolus (2000 μg) of vitamin D.

View Article and Find Full Text PDF

Binding motifs of the ETS-domain transcription factor GABPA are found with high significance below the summits of the vitamin D receptor (VDR) cistrome. VDR is the nuclear receptor for the biologically most active vitamin D metabolite 1α,25-dihydroxyvitamin D (1,25(OH)D). In this study, we determined the GABPA cistrome in THP-1 human monocytes and found that it is comprised of 3822 genomic loci, some 20% of which were modulated by 1,25(OH)D.

View Article and Find Full Text PDF

The transcription factor vitamin D receptor (VDR) is the exclusive nuclear target of the biologically active form of vitamin D (1,25(OH)D). In THP-1 human monocytes we obtained a highly accurate VDR cistrome after 2 and 24h ligand stimulation comprising >11,600 genomic loci, 78% of which were detected exclusively after 24h. In contrast, a group of 510 persistent VDR sites occurred at all conditions and some 2100 VDR loci were only transiently occupied.

View Article and Find Full Text PDF

The ETS-domain transcription factor PU.1 acts as a pioneer factor for other transcription factors including nuclear receptors. In this study, we report that in THP-1 human monocytes the PU.

View Article and Find Full Text PDF

CCCTC-binding factor (CTCF) is a transcription factor being involved in 3D chromatin organization and displays a highly conserved genome-wide binding pattern. In this study, we report the cistrome of CTCF in THP-1 human monocytes and confirm that from the 40,078 CTCF binding sites nearly 85% are identical with those found in K562 monocytes. Quadruplicate chromatin immunoprecipitation sequencing (ChIP-seq) demonstrated that at 2130 loci the association strenght of CTCF with genomic DNA was significantly (p<0.

View Article and Find Full Text PDF

Vitamin D has via its metabolites 25-hydroxyvitamin D (25(OH)D) and 1α,25-dihydroxyvitamin D (1,25(OH)D) direct effects on the transcriptome and the epigenome of most human cells. In the VitDbol study we exposed 35 healthy young adults to an oral vitamin D dose (2000μg) or placebo and took blood samples directly before the supplementation as well as at days 1, 2 and 30. Within 24h the vitamin D intake raised the average serum levels of both 25(OH)D and 1,25(OH)D by approximately 20%.

View Article and Find Full Text PDF

The physiological functions of vitamin D are mediated by its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) activating the transcription factor vitamin D receptor (VDR). In THP-1 human monocytes we demonstrated epigenome-wide effects of 1,25(OH)2D3 at 8979 loci with significantly modulated chromatin accessibility. Maximal chromatin opening was observed after 24 h, while after 48 h most sites closed again.

View Article and Find Full Text PDF

Monocytes are important cells of the innate immune system that can differentiate into macrophages and dendritic cells. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D (1,25(OH)D), serves as a ligand of the nuclear receptor vitamin D receptor (VDR). A key physiological function of 1,25(OH)D is the defense against pathogens, such as those causing tuberculosis, that involves the modulation of the monocyte transcriptome.

View Article and Find Full Text PDF

Vitamin D3 has transcriptome- and genome-wide effects and activates, via the binding of its metabolite 1α,25-dihydroxyvitamin D3 to the transcription factor vitamin D receptor (VDR), several hundred target genes. Using samples from a 5-month vitamin D3 intervention study (VitDmet), we recently reported that the expression of 12 VDR target genes in peripheral blood mononuclear cells (PBMCs) as well as 12 biochemical and clinical parameters of the study participants are significantly triggered by vitamin D3. In this study, we performed a more focused selection of further 12 VDR target genes and demonstrated that changes of their mRNA expression in PBMCs of VitDmet subjects significantly correlate with alterations of 25-hydroxyvitamin D3 serum levels.

View Article and Find Full Text PDF

The vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is the high affinity ligand of the transcription factor vitamin D receptor (VDR) and therefore a direct regulator of transcription. Transcriptome-wide analysis of THP-1 human monocytes had indicated more than 600 genes to be significantly (p<0.05) stimulated after 4h incubation with 1,25(OH)2D3, but only 67 of them where more than 1.

View Article and Find Full Text PDF

Vitamin D(3) belongs to the few nutritional compounds that has, via the binding of its metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) to the transcription factor vitamin D receptor (VDR), a direct effect on gene regulation. The relation of thousands of genomic VDR-binding sites to a few hundred primary 1,25(OH)(2)D(3) target genes is still largely unresolved. We studied chromatin domains containing genes for the adhesion molecules CD97 and LRRC8A, the glucose transporter SLC37A2 and the coactivator NRIP1.

View Article and Find Full Text PDF

The vitamin D receptor (VDR) is a transcription factor that mediates the genomic effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Genome-wide there are several thousand binding sites and hundreds of primary 1,25(OH)2D3 target genes, but their functional relation is largely elusive. In this study, we used ChIA-PET data of the transcription factor CTCF in combination with VDR ChIP-seq data, in order to map chromatin domains containing VDR binding sites.

View Article and Find Full Text PDF

Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140-170 kb in size and contain one and three VDR binding sites, respectively.

View Article and Find Full Text PDF

The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin.

View Article and Find Full Text PDF

A genome-wide data set on vitamin D receptor (VDR) binding sites in human THP-1 cells (monocytes) led us to the genomic region around the ASAP2 (Arf-GAP with SH3 domain, ankyrin repeat and PH domain 2) gene, whose product is involved in the regulation of vesicular transport, cellular migration and autophagy. Using ENCODE data, we demonstrated that the ASAP2 gene is flanked by conserved binding sites of the insulating transcription factor CTCF. These sites define different chromosomal domains containing the ASAP2 gene, up to six additional genes and three VDR binding sites.

View Article and Find Full Text PDF

Vitamin D deficiency has been associated with an increased risk of developing a number of diseases. Here we investigated samples from 71 pre-diabetic individuals of the VitDmet study, a 5-month high dose vitamin D3 intervention trial during Finnish winter, for their changes in serum 25-hydroxyvitamin D3 (25(OH)D3) concentrations and the expression of primary vitamin D target genes in peripheral blood mononuclear cells and adipose tissue. A negative correlation between serum concentrations of parathyroid hormone and 25(OH)D3 suggested an overall normal physiological vitamin D response among the participants.

View Article and Find Full Text PDF

The basic helix-loop-helix protein BHLHE40 functions as a transcriptional repressor and is involved in the control of cellular growth, development and circadian rhythms. By the use of genome-wide data on vitamin D receptor (VDR) location, open chromatin and histone modification backed-up by gene-specific mRNA expression studies we show that the human BHLHE40 gene is dynamically up-regulated by the VDR ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and down-regulated by the histone deactylase inhibitor trichostatin A. The VDR binding site is located 1.

View Article and Find Full Text PDF

The nuclear hormone 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3) or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)(2)D(3) and TsA. Transcriptome-wide, 18.

View Article and Find Full Text PDF