To expand the applicability of recently developed dioxane- and morpholino-based nucleotide analogues, their seed region destabilizing properties in small interfering RNAs (siRNAs) were investigated in order to improve potential off-target profiles. For this purpose, the corresponding adenosine analogues were synthesized in two diastereomeric series as building blocks for the automated oligonucleotide synthesis. The obtained nucleotide precursors were integrated at position 7 of an siRNA antisense strand, targeting transthyretin messenger RNA.
View Article and Find Full Text PDFA morpholine-based nucleotide analog was developed as a building block for hepatic siRNA targeting and stabilization. Attachment of an asialoglycoprotein-binding GalNAc ligand at the morpholine nitrogen was realized with different linkers. The obtained morpholino GalNAc scaffolds were coupled to the sense strand of a transthyretin-targeting siRNA and tested for their knockdown potency and .
View Article and Find Full Text PDFTargeted extrahepatic delivery of siRNA remains a challenging task in the field of nucleic acid therapeutics. An ideal delivery tool must internalize siRNA exclusively into the cells of interest without affecting the silencing activity of siRNA. Here, we report the use of anti-EGFR Nanobodies (trademark of Ablynx N.
View Article and Find Full Text PDFA novel class of nucleotide analogues with a dioxane ring as central scaffold has been developed. Synthetic routes in two diastereomeric series were realized, and the final thymidine analogues were synthesized with common functionalities for the automated oligonucleotide synthesis. The chemical space of the initially derived nucleotides was expanded by changing the central dioxane to analogous morpholine derivatives.
View Article and Find Full Text PDFThe pattern recognition receptor RIG-I plays an important role in the recognition of nonself RNA and antiviral immunity. RIG-I's natural ligand, triphosphate RNA (ppp-RNA), is proposed to be a valuable addition to the growing arsenal of cancer immunotherapy treatment options. In this study, we present comprehensive data validating the concept and utility of treatment with synthetic RIG-I agonist ppp-RNA for the therapy of human cancer, with melanoma as potential entry indication amenable to intratumoral treatment.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) represents a serious public health challenge with few therapeutic options available to cancer patients.Wnt/β-catenin pathway is thought to play a significant role in HCC pathogenesis. In this study, we confirmed high frequency of CTNNB1 (β-catenin) mutations in two independent cohorts of HCC patients and demonstrated significant upregulation of β-catenin protein in the overwhelming majority of HCC patient samples, patient-derived xenografts (PDX) and established cell lines.
View Article and Find Full Text PDFUnlabelled: Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRNAs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines.
View Article and Find Full Text PDFAnn N Y Acad Sci
June 2005
In renal HEK-293 cells, the dietary Maillard reaction compounds casein-linked Nepsilon-carboxymethyllysine (CML), CML, bread crust (BC), and pronyl-glycine (a key compound formed in association with the process-induced heat impact applied to bread dough) all showed activation of p38-MAP kinase. Expression of the C-terminus truncated receptor for advanced glycation end products (RAGE) resulted in a reduction of HEK-293-MAP kinase activation. As these findings suggested a RAGE-mediated activating effect of CML, BC, and pronyl-glycine on kidney cellular signal transduction pathways, an in vivo study was performed.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2003
Investigating the cellular effects of food compounds formed by heat treatment during processing, we recently demonstrated the expression of the receptor for advanced glycation endproducts (RAGE) and the p44/42 MAP kinase activation by casein-N(epsilon )-(carboxymethyl)lysine (casein-CML), a food-derived AGE, in the intestinal cell line Caco-2. In this work, we report a Caco-2 p44/42 MAP kinase activation by bread crust and coffee extract. After identification, quantification, and synthesis of two key compounds formed in association with the process-induced heat impact applied to bread dough and coffee beans, those compounds, namely the AGE pronyl-glycine and the non-AGE N-methylpyridinium, were also demonstrated for the first time to activate the p44/42 MAP kinase through binding to RAGE in Caco-2 cells.
View Article and Find Full Text PDF