The olivo-cerebellar system plays an important role in vertebrate sensorimotor control. Here, we investigate sensory representations in the inferior olive (IO) of larval zebrafish and their spatial organization. Using single-cell labeling of genetically identified IO neurons, we find that they can be divided into at least two distinct groups based on their spatial location, dendritic morphology, and axonal projection patterns.
View Article and Find Full Text PDFSensory systems must reduce the transmission of redundant information to function efficiently. One strategy is to continuously adjust the sensitivity of neurons to suppress responses to common features of the input while enhancing responses to new ones. Here we image the excitatory synaptic inputs and outputs of retinal ganglion cells to understand how such dynamic predictive coding is implemented in the analysis of spatial patterns.
View Article and Find Full Text PDFCardiac arrhythmias are among the most challenging human disorders to diagnose and treat due to their complex underlying pathophysiology. Suitable experimental animal models are needed to study the mechanisms causative for cardiac arrhythmogenesis. To enable analysis of cardiac cellular electrophysiology with a high spatial and temporal resolution, we generated and carefully validated two zebrafish models, one expressing an optogenetic voltage indicator (chimeric VSFP-butterfly CY) and the other a genetically encoded calcium indicator (GCaMP6f) in the heart.
View Article and Find Full Text PDFA long-standing objective in neuroscience has been to image distributed neuronal activity in freely behaving animals. Here we introduce NeuBtracker, a tracking microscope for simultaneous imaging of neuronal activity and behavior of freely swimming fluorescent reporter fish. We showcase the value of NeuBtracker for screening neurostimulants with respect to their combined neuronal and behavioral effects and for determining spontaneous and stimulus-induced spatiotemporal patterns of neuronal activation during naturalistic behavior.
View Article and Find Full Text PDFA simple neural circuit motif in the zebrafish brain enables robust and reliable behavioral choices.
View Article and Find Full Text PDFFluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines.
View Article and Find Full Text PDFRapidly developing imaging technologies including two-photon microscopy and genetically encoded calcium indicators have opened up new possibilities for recording neural population activity in awake, behaving animals. In the small, transparent zebrafish, it is even becoming possible to image the entire brain of a behaving animal with single-cell resolution, creating brain-wide functional maps. In this chapter, we comprehensively review past functional imaging studies in zebrafish, and the insights that they provide into the functional organization of neural circuits.
View Article and Find Full Text PDFVision of high temporal resolution depends on careful regulation of photoresponse kinetics, beginning with the lifetime of activated photopigment. The activity of rhodopsin is quenched by high-affinity binding of arrestin to photoexcited phosphorylated photopigment, which effectively terminates the visual transduction cascade. This regulation mechanism is well established for rod photoreceptors, yet its role for cone vision is still controversial.
View Article and Find Full Text PDFOver the past three decades, the zebrafish has been proven to be an excellent model to investigate the genetic control of vertebrate embryonic development, and it is now also increasingly used to study behaviour and adult physiology. Moreover, mutagenesis approaches have resulted in large collections of mutants with phenotypes that resemble human pathologies, suggesting that these lines can be used to model diseases and screen drug candidates. With the recent development of new methods for gene targeting and manipulating or monitoring gene expression, the range of genetic modifications now possible in zebrafish is increasing rapidly.
View Article and Find Full Text PDFUntil recently, it was generally accepted that the vascularization of solid tumors occurred exclusively through the sprouting and co-option from pre-existing blood vessels. Growing evidence now suggests that bone marrow-derived endothelial progenitor cells (EP) circulate in the blood and may play an important role in the formation of new blood vessels in certain tumors. Whether endothelial progenitors participate in the vascularization of brain tumors has not yet been evaluated.
View Article and Find Full Text PDF