Publications by authors named "Sabine Neidhold"

Prion infections of the central nervous system (CNS) are characterised by a reactive gliosis and the subsequent degeneration of neuronal tissue. The activation of glial cells, which precedes neuronal death, is likely to be initially caused by the deposition of misfolded, proteinase K-resistant, isoforms (termed PrP(res)) of the prion protein (PrP) in the brain. Cytokines and chemokines released by PrP(res)-activated glia cells may contribute directly or indirectly to the disease development by enhancement and generalisation of the gliosis and via cytotoxicity for neurons.

View Article and Find Full Text PDF

The underlying pathomechanisms in prion infections of the central nervous system are still insufficiently understood. The identification of genes with altered expression patterns in the diseased brain may provide insight into the disease development on the molecular level, which ultimately leads to neuronal loss. To provide a detailed analysis of changes in the molecular level in prion disease pathology we used a large-scale gene array based approach, which covers more than 11,000 functionally characterised sequences and expressed sequence tags, for the analysis of gene expression profile alterations in the cortex, medulla, and pons of scrapie-infected mice.

View Article and Find Full Text PDF

Prion-induced chronic neurodegeneration has a substantial inflammatory component, and the activation of glia cells may play an important role in disease development and progression. However, the functional contribution of cytokines to the development of the gliosis in vivo was never systematically studied. We report here that the expression of interleukin-1beta (IL-1beta), IL-1beta-converting enzyme, and IL-1 receptor type 1 (IL-1RI) is up-regulated in a murine scrapie model.

View Article and Find Full Text PDF