Fusion proteins combining oligomeric assemblies of a genetically obtained single-chain (sc) variant of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with antibodies directed against tumor-associated antigens represent a promising strategy to overcome the limited therapeutic activity of conventional soluble TRAIL. To further improve the scTRAIL module in order to obtain a robust, thermostable molecule of high activity, we performed a comprehensive analysis of the minimal TNF homology domain (THD) and optimized linkers between the 3 TRAIL subunits constituting a scTRAIL. Through a stepwise mutagenesis of the N- and C-terminal region and the joining linker sequences, we generated bioactive scTRAIL molecules comprising a covalent linkage of the C-terminal Val280 and the N-terminal position 122 by only 2 amino acid residues in combination with conservative exchanges at positions 122 and 279.
View Article and Find Full Text PDFTumor necrosis factor (TNF) signals through two membrane receptors, TNFR1 and TNFR2, and TNFR1 is known to be the major pathogenic mediator of chronic and acute inflammatory diseases. Present clinical intervention is based on neutralization of the ligand TNF. Selective inhibition of TNF receptor 1 (TNFR1) provides an alternative opportunity to neutralize the pro-inflammatory activity of TNF while maintaining the advantageous immunological responses mediated by TNFR2, including immune regulation, tissue homeostasis and neuroprotection.
View Article and Find Full Text PDFFor many ligands of the TNF family, trimer stability and oligomerization status are crucial determinants of receptor activation. However, for the immunostimulatory ligands CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand (GITRL) detailed information regarding these requirements is lacking. Here, we comprehensively evaluated the effect of trimer stability and oligomerization on receptor activation by these ligands.
View Article and Find Full Text PDFOX40 ligand (OX40L) and OX40 are typical members of the tumor necrosis factor ligand family and the tumor necrosis factor receptor superfamily, respectively, and are involved in the costimulation and differentiation of T cells. Like other tumor necrosis factor ligands, OX40L is a type II transmembrane protein. Recombinant soluble human OX40L assembles into trimers and is practically inactive despite binding to OX40.
View Article and Find Full Text PDFTumor necrosis factor (TNF) is a recognized pathogenic mediator in a number of chronic and acute inflammatory diseases. Antibodies targeting TNF have significantly improved therapy of chronic inflammatory diseases, in particular rheumatoid arthritis. Despite this success, anti-TNF treatment shows clinical efficacy only in part of the patients and is often transient, necessitating the development of alternative reagents to combat TNF action.
View Article and Find Full Text PDFWe have previously developed TNF prodrugs comprised of a N-terminal scFv targeting, a TNF effector and a C-terminal TNFR1-derived inhibitor module linked to TNF via a MMP-2 motif containing peptide, allowing activation by MMP-2-expressing tumor cells. To overcome the known heterogeneity of matrix metalloprotease expression, we developed TNF prodrugs that become processed by other tumor and/or stroma-associated proteases. These TNF prodrugs comprise either an uPA-selective or a dual uPA-MMP-2-specific linker which displayed efficient, target-dependent and cleavage sequence-specific activation by the corresponding tumor cell-expressed proteases.
View Article and Find Full Text PDF