Publications by authors named "Sabine L Flitsch"

Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk.

View Article and Find Full Text PDF

Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases.

View Article and Find Full Text PDF

Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.

View Article and Find Full Text PDF

The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2.

View Article and Find Full Text PDF

Iminosugar scaffolds are highly sought-after pharmaceutical targets, but their chemical synthesis is lengthy and can suffer from poor scalability and purification. Here we report protecting-group-free chemoenzymatic and biocatalytic cascades to synthesize iminosugars from sugar-derived aminopolyols in two steps. Using galactose oxidase variant F followed by a chemical or enzymatic reduction provided an efficient one-pot route to these targets, with product formation >70%.

View Article and Find Full Text PDF

β-D-Galactofuranose (Galf) and its polysaccharides are found in bacteria, fungi and protozoa but do not occur in mammalian tissues, and thus represent a specific target for anti-pathogenic drugs. Understanding the enzymatic degradation of these polysaccharides is therefore of great interest, but the identity of fungal enzymes with exclusively galactofuranosidase activity has so far remained elusive. Here we describe the identification and characterization of a galactofuranosidase from the industrially important fungus Aspergillus niger.

View Article and Find Full Text PDF

The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.

View Article and Find Full Text PDF

Amino-polyols represent attractive chemical building blocks but can be challenging to synthesize because of the high density of asymmetric functionalities and the need for extensive protecting-group strategies. Here we present a three-component strategy for the stereoselective enzymatic synthesis of amino-diols and amino-polyols using a diverse set of prochiral aldehydes, hydroxy ketones, and amines as starting materials. We were able to combine biocatalytic aldol reactions, using variants of d-fructose-6-phosphate aldolase (FSA), with reductive aminations catalyzed by IRED-259, identified from a metagenomic library.

View Article and Find Full Text PDF

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines.

View Article and Find Full Text PDF

Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain ()- and ()-isomers. Here we show that despite existing as a mixture of isomers, -acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and on the surface of liposomes, with conversions up to 60% in solution and 15-20% at the liposome surface.

View Article and Find Full Text PDF

N-alkanoyl-N-methylglucamides (MEGAs) are non-toxic surfactants widely used as commercial ingredients, but more sustainable syntheses towards these compounds are highly desirable. Here, we present a biocatalytic route towards MEGAs and analogues using a truncated carboxylic acid reductase construct tailored for amide bond formation (CARmm-A). CARmm-A is capable of selective amide bond formation without the competing esterification reaction observed in lipase catalysed reactions.

View Article and Find Full Text PDF

The potential of antibody conjugates with high drug loading in anticancer therapy has recently been highlighted by the approval of Trastuzumab deruxtecan and Sacituzumab govitecan. These biopharmaceutical approaches have spurred interest in bioconjugation strategies with high and defined degrees of drug-to-antibody ratio (DAR), in particular on native antibodies. Here, a glycoengineering methodology was developed to generate antibody drug conjugates with DAR of up to eight, by combining highly selective enzymatic galactosylation and oxidation with biorthogonal tandem Knoevenagel-Michael addition chemistry.

View Article and Find Full Text PDF
Article Synopsis
  • - The goal of biocatalysis is to replicate the way eukaryotic cells perform complex chemical reactions in a controlled manner, but increasing complexity often makes traditional batch processes ineffective.
  • - To address this, continuous flow systems were utilized to enable successful multistep biocatalytic reactions by transporting reactive intermediates directly through various biocatalyst modules.
  • - This method demonstrated the capability to synthesize diverse amines and successfully produced the natural product 4O-methylnorbelladine using a specific series of biocatalytic reactions without unwanted cross-reactivity.
View Article and Find Full Text PDF

The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental processes. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors can be used to perturb HS function and these compounds provide cheap alternatives to genetic manipulation methods.

View Article and Find Full Text PDF

Promiscuous activity of a glycosyltransferase was exploited to polymerise glucose from UDP-glucose via the generation of β-1,4-glycosidic linkages. The biocatalyst was incorporated into biocatalytic cascades and chemo-enzymatic strategies to synthesise cello-oligosaccharides with tailored functionalities on a scale suitable for employment in mass spectrometry-based assays. The resulting glycan structures enabled reporting of the activity and selectivity of celluloltic enzymes.

View Article and Find Full Text PDF

The lack of label-free high-throughput screening technologies presents a major bottleneck in the identification of active and selective biocatalysts, with the number of variants often exceeding the capacity of traditional analytical platforms to assess their activity in a practical time scale. Here, we show the application of direct infusion of biotransformations to the mass spectrometer (DiBT-MS) screening to a variety of enzymes, in different formats, achieving sample throughputs equivalent to ∼40 s per sample. The heat map output allows rapid selection of active enzymes within 96-well plates facilitating identification of industrially relevant biocatalysts.

View Article and Find Full Text PDF
Article Synopsis
  • The main goal of biocatalysis is to imitate how eukaryotic cells perform complex multi-step reactions in a controlled way.* -
  • Traditional batch conditions struggled with complex biocatalytic cascades, prompting the use of continuous flow systems to make these reactions successful.* -
  • By generating reactive carbonyl intermediates and using a series of biocatalysts, the study successfully synthesized 4O-methylnorbelladine through a newly designed reaction sequence.*
View Article and Find Full Text PDF

As the enzyme toolbox for biocatalysis has expanded, so has the potential for the construction of powerful enzymatic cascades for efficient and selective synthesis of target molecules. Additionally, recent advances in computer-aided synthesis planning are revolutionising synthesis design in both synthetic biology and organic chemistry. However, the potential for biocatalysis is not well captured by tools currently available in either field.

View Article and Find Full Text PDF

Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis.

View Article and Find Full Text PDF

High-throughput glycan analysis has become an important part of biopharmaceutical production and quality control. However, it is still a significant challenge in the field of glycomics to easily deduce isomeric glycan structures, especially in a high-throughput manner. Ion mobility spectrometry (IMS) is an excellent tool for differentiating isomeric glycan structures.

View Article and Find Full Text PDF