Publications by authors named "Sabine Jurado"

Combination approaches are needed to strengthen and extend the clinical response to KRAS inhibitors (KRASi). Here, we assessed the antitumor responses of KRAS mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRAS inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring combination therapies to enhance the effectiveness of KRAS targeted therapy in cancer treatment.
  • The study shows that combining the SOS1-KRAS inhibitor BI-3406 with a KRAS inhibitor yields a stronger anti-tumor response than using either treatment alone or other combinations in lung and colorectal cancer models.
  • This combination not only suppresses key cancer signaling pathways more effectively but also helps delay drug resistance, making it a promising strategy for tackling KRAS-mutated tumors and overcoming resistance to KRAS inhibitors.
View Article and Find Full Text PDF

While PAX5 is an important tumor suppressor gene in B-cell acute lymphoblastic leukemia (B-ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5-JAK2 encodes a protein consisting of the PAX5 DNA-binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5-JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles.

View Article and Find Full Text PDF

PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes.

View Article and Find Full Text PDF

How MYC promotes the development of cancer remains to be fully understood. Here, we report that the Zn(2+)-finger transcription factor ASCIZ (ATMIN, ZNF822) synergizes with MYC to activate the expression of dynein light chain (DYNLL1, LC8) in the murine Eμ-Myc model of lymphoma. Deletion of Asciz or Dynll1 prevented the abnormal expansion of pre-B cells in pre-cancerous Eμ-Myc mice and potentiated the pro-apoptotic activity of MYC in pre-leukemic immature B cells.

View Article and Find Full Text PDF

Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity.

View Article and Find Full Text PDF

Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia telangiectasia mutated) substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ; also known as ATMIN/ZNF822), a protein with dual functions in the DNA damage response and as a transcription factor, leads to progressive cell loss from the pre-B stage onwards and severely diminished splenic B cell numbers in mice. This lymphopenia cannot be suppressed by deletion of p53 or complementation with a prearranged BCR, indicating that it is not caused by impaired DNA damage responses or defective V(D)J recombination.

View Article and Find Full Text PDF

The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn(2+) finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression.

View Article and Find Full Text PDF

The ATM substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ, also known as ATMIN and ZNF822) has previously been reported to be important for the repair of methylating and oxidative DNA damage, and it has also been proposed to regulate the stability and DNA damage-independent activation of the ATM kinase. While the role of the protein in the regulation of ATM remains controversial, two recent ASCIZ mouse knockout papers confirm its role in the DNA base damage response, including oxidative stress resistance in vivo. Similar to other DNA base damage repair proteins, ASCIZ is essential for embryonic development, with lethality of Asciz-null embryos around day E16.

View Article and Find Full Text PDF

Zn²(+)-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn²(+)-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice.

View Article and Find Full Text PDF