Publications by authors named "Sabine Gruner"

The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation , optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for studies.

View Article and Find Full Text PDF

This study independently confirms in the JR5558 mouse model of aberrant retinal angiogenesis, that simultaneous VEGF‐A and ANG‐2 neutralization using a bispecific anti‐VEGF‐A/ANG‐2 antibody reduces vascular leakage, immune reactivity and apoptosis more effectively than either agent alone.[Image: see text]

View Article and Find Full Text PDF

Cathepsin(Cat)-S processing of the invariant chain-MHC-II complex inside antigen presenting cells is a central pathomechanism of autoimmune-diseases. Additionally, Cat-S is released by activated-myeloid cells and was recently described to activate protease-activated-receptor-(PAR)-2 in extracellular compartments. We hypothesized that Cat-S blockade targets both mechanisms and elicits synergistic therapeutic effects on autoimmune tissue injury.

View Article and Find Full Text PDF

Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner.

View Article and Find Full Text PDF

The cannabinoid receptor 2 (CB2) system is described to modulate various pathological conditions, including inflammation and fibrosis. A series of new heterocyclic small-molecule CB2 receptor agonists were identified from a high-throughput screen. Lead optimization gave access to novel, highly potent, and selective (over CB1) triazolopyrimidine derivatives.

View Article and Find Full Text PDF

Objectives: Major histocompatibility complex (MHC) class II-mediated priming of T and B lymphocytes is a central element of autoimmunity in systemic lupus erythematosus (SLE) and lupus nephritis. The cysteine protease cathepsin S degrades the invariant peptide chain during MHC II assembly with antigenic peptide in antigen-presenting cells; therefore, we hypothesised that cathepsin S inhibition would be therapeutic in SLE.

Methods: We developed a highly specific small molecule, orally available, cathepsin S antagonist, RO5461111, with suitable pharmacodynamic and pharmacokinetic properties that efficiently suppressed antigen-specific T cell and B cell priming in vitro and in vivo.

View Article and Find Full Text PDF

Background: Whole transcriptome analyses are an essential tool for understanding disease mechanisms. Approaches based on next-generation sequencing provide fast and affordable data but rely on the availability of annotated genomes. However, there are many areas in biomedical research that require non-standard animal models for which genome information is not available.

View Article and Find Full Text PDF

A series of highly potent & selective adamantane derived CB2 agonists was identified in a high-throughput screen. A SAR was established and physicochemical properties were significantly improved. This was accompanied by potency of the compounds on the Q63R variant and varying β-arrestin data which will support the insight into their relevance for the in vivo situation.

View Article and Find Full Text PDF

Background: All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation.

View Article and Find Full Text PDF

The progression of diabetic nephropathy is associated with an infiltration of macrophages expressing different phenotypes. As classically activated chemokine receptor CCR2+ macrophages are thought to drive tissue inflammation and remodeling, we tested whether blocking CCR2 could reduce intrarenal inflammation and prevent glomerulosclerosis in type 2 diabetes. This was achieved with RO5234444, an orally active small-molecule CCR2 antagonist that blocks ligand binding, its internalization, and monocyte chemotaxis.

View Article and Find Full Text PDF

Selectins are attractive targets for specific anti-inflammatory therapies. Using human lymphocytes as well as an L-selectin-transfected pre-B-cell line in dynamic flow chamber experiments, we could demonstrate that the small-molecule compound efomycine M blocks L-selectin-mediated lymphocyte rolling on sialylated Lewis(X), an action that was confirmed by plasmon resonance spectroscopy. Recruitment of naive lymphocytes to peripheral lymph nodes depends on L-selectin-mediated adhesion to high endothelial venules.

View Article and Find Full Text PDF

Blood coagulation is thought to be initiated by plasma protease factor VIIa in complex with the membrane protein tissue factor. In contrast, coagulation factor XII (FXII)-mediated fibrin formation is not believed to play an important role for coagulation in vivo. We used FXII-deficient mice to study the contributions of FXII to thrombus formation in vivo.

View Article and Find Full Text PDF

Glycoprotein VI (GPVI) is an essential platelet collagen receptor; therefore, the inhibition of GPVI-collagen interactions may be an attractive antithrombotic strategy. We have previously shown that targeting of GPVI with antibodies leads to the depletion of the receptor and to long-term antithrombotic protection in mice. An alternative agent to interfere with GPVI-collagen interactions might be soluble GPVI acting as a competitive inhibitor, thereby averting undesired effects on platelets.

View Article and Find Full Text PDF

Background: Platelet inhibition is a major strategy to prevent arterial thrombosis, but it is frequently associated with increased bleeding because of impaired primary hemostasis. The activating platelet collagen receptor, glycoprotein VI (GP VI), may serve as a powerful antithrombotic target because its inhibition or absence results in profound protection against arterial thrombosis but no major bleeding in mice.

Methods And Results: Mice lacking (-/-) or expressing half-levels (+/-) of the other major platelet collagen receptor, integrin alpha2beta1, were injected with the anti-GP VI antibody JAQ1 and analyzed on day 5.

View Article and Find Full Text PDF

The diffusible platelet stimuli ADP and thromboxane A(2) activate multiple G protein-mediated signaling pathways and function as important secondary mediators of platelet activation as they are released from activated platelets. Because they can also increase their own formation and release, their effects are amplified; eventually, all major G protein-mediated signaling pathways are activated. The multiple positive feedback mechanisms operating during platelet activation have obscured the exact analysis of the roles individual G protein-mediated signaling pathways play during the platelet activation process.

View Article and Find Full Text PDF

Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A(2) (TXA(2)) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G(q), G(i) and G(z) (refs.

View Article and Find Full Text PDF

Platelet adhesion and activation at the vascular wall are the initial steps leading to arterial thrombosis and vascular occlusion. Prostacyclin and nitric oxide inhibit platelet adhesion, acting via cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases. A major downstream target for both cAMP- and cGMP-dependent protein kinases is the vasodilator-stimulated phosphoprotein (VASP).

View Article and Find Full Text PDF

Damage to the integrity of the vessel wall results in exposure of the subendothelial extracellular matrix (ECM), which triggers integrin-dependent adhesion and aggregation of platelets. The role of platelet beta1 integrins in these processes remains mostly undefined. Here, we demonstrate by intravital fluorescence microscopy that platelet adhesion and thrombus growth on the exposed ECM of the injured carotid artery is not significantly altered in alpha2-null mice and even in mice with a Cre/loxP-mediated loss of all beta1 integrins on their platelets.

View Article and Find Full Text PDF

Objective: Monocyte recruitment into the subendothelium is a crucial step in atherogenesis. Chlamydia pneumoniae resides in circulating monocytes and in the atherosclerotic vascular wall. However, the role of C pneumoniae for monocyte recruitment is unknown.

View Article and Find Full Text PDF

Glycoprotein (GP) VI is an essential collagen receptor on platelets and may serve as an attractive target for antithrombotic therapy. We have previously shown that a monoclonal antibody (mAb) against the major collagen-binding site on mouse GPVI (JAQ1) induces irreversible down-regulation of the receptor and, consequently, long-term antithrombotic protection in vivo. To determine whether this unique in vivo effect of JAQ1 is based on its interaction with the ligand-binding site on GPVI, we generated new mAbs against different epitopes on GPVI (JAQ2, JAQ3) and tested their in vitro and in vivo activity.

View Article and Find Full Text PDF

Platelet adhesion and aggregation at sites of vascular injury is crucial for hemostasis but may lead to arterial occlusion in the setting of atherosclerosis and precipitate diseases such as myocardial infarction. A current hypothesis suggests that platelet glycoprotein (GP) Ib interaction with von Willebrand factor recruits flowing platelets to the injured vessel wall, where subendothelial fibrillar collagens support their firm adhesion and activation. However, so far this hypothesis has not been tested in vivo.

View Article and Find Full Text PDF

The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE(-)(/)(-) mice before the development of manifest atherosclerotic lesions. Platelet-endothelial cell interaction involved both platelet glycoprotein (GP)Ibalpha and GPIIb-IIIa.

View Article and Find Full Text PDF

Endothelial migration on extracellular matrix is regulated by integrins and proteolysis. Previous studies showed that beta(3)-integrins regulate expression of the urokinase-type plasminogen activator receptor (uPAR) through outside-in signalling involving the cytoplasmic domain. Here we show that overexpression of the integrin-binding protein beta(3)-endonexin decreased uPAR promoter (-398 base-pair fragment) activity that is constitutively active in endothelial cells.

View Article and Find Full Text PDF