Background: Despite advances in radiation techniques, radiation cystitis (RC) remains a significant cause of morbidity from pelvic radiotherapy, which may affect patients' quality of life (QoL). The pathophysiology of RC is not well understood, which limits the development of effective treatments.
Objective: The Radiotoxicity Bladder Biomarkers study aims to investigate the correlation between blood and urinary biomarkers and the intensity of acute RC symptoms and QoL in patients undergoing localized prostate cancer radiotherapy.
The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) have demonstrated therapeutic properties both and to treat various diseases, including anti-inflammatory, immunomodulatory and pro-angiogenic effects. These therapeutic effects are mediated by their secretome composed of soluble factors and extracellular vesicles (EVs). The composition of EVs reflects the molecular and functional characteristics of parental cells.
View Article and Find Full Text PDFAlthough radiation therapy plays a crucial role in cancer treatment, and techniques have improved continuously, irradiation induces side effects in healthy tissue. Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers and negatively impacts patients' quality of life (QoL). To date, no effective treatment is available, and this toxicity remains a therapeutic challenge.
View Article and Find Full Text PDFRadiation therapy has a fundamental role in the management of cancers. However, despite a constant improvement in radiotherapy techniques, the issue of radiation-induced side effects remains clinically relevant. Mechanisms of acute toxicity and late fibrosis are therefore important topics for translational research to improve the quality of life of patients treated with ionizing radiations.
View Article and Find Full Text PDFThe radiation protection strategy with chemical agents has long been based on an antioxidative approach consisting in reducing the number of radical oxygen and nitrogen species responsible for the formation of the radiation-induced (RI) DNA damage, notably the DNA double-strand breaks (DSB), whose subset participates in the RI lethal effect as unrepairable damage. Conversely, a DSB repair-stimulating strategy that may be called the "pro-episkevic" approach (from the ancient Greek , meaning repair) can be proposed. The pro-episkevic approach directly derives from a mechanistic model based on the RI nucleoshuttling of the ATM protein (RIANS) and contributes to increase the number of DSB managed by NHEJ, the most predominant DSB repair and signaling pathway in mammalians.
View Article and Find Full Text PDFBackground: Despite improvements in radiation techniques, pelvic radiotherapy is responsible for acute and delayed bladder adverse events, defined as radiation cystitis. The initial symptoms of bladder injury secondary to pelvic irradiation are likely to occur during treatment or within 3 months of radiotherapy in approximately 50% of irradiated patients, and have a significant impact on their quality of life. The pathophysiology of radiation cystitis is not well understood, particularly because of the risk of complications associated with access to bladder tissue after irradiation, which limits our ability to study this process and develop treatments.
View Article and Find Full Text PDFAlumina nanoparticles (AlO NPs) can be released in occupational environments in different contexts such as industry, defense, and aerospace. Workers can be exposed by inhalation to these NPs, for instance, through welding fumes or aerosolized propellant combustion residues. Several clinical and epidemiological studies have reported that inhalation of AlO NPs could trigger aluminosis, inflammation in the lung parenchyma, respiratory symptoms such as cough or shortness of breath, and probably long-term pulmonary fibrosis.
View Article and Find Full Text PDFRadiation cystitis (RC) results from chronic inflammation, fibrosis, and vascular damage. The urinary symptoms it causes have a serious impact on patients' quality of life. Despite the improvement in irradiation techniques, the incidence of radiation cystitis remains stable over time, and the therapeutic possibilities remain limited.
View Article and Find Full Text PDFAnxiety disorder is one of the most reported complications following organophosphorus (OP) nerve agent (NA) exposure. The goal of this study was to characterize the long-term behavioral impact of a single low dose exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. We chose two different sublethal doses of NIMP, each corresponding to a fraction of the median lethal dose (one mild and one convulsive), and evaluated behavioral changes over a 6-month period following exposure.
View Article and Find Full Text PDFObjective: Solid composite propellants combustion, in aerospace and defense fields, can lead to complex aerosols emission containing high concentrations of alumina nanoparticles (AlO NPs) and hydrogen chloride gas (HCl). Exposure to these mixtures by inhalation is thus possible but literature data toward their pulmonary toxicity are missing. To specify hazards resulting from these combustion aerosols, a pilot study was implemented.
View Article and Find Full Text PDFThe evolution of SARS-CoV-2 pneumonia to acute respiratory distress syndrome is linked to a virus-induced "cytokine storm", associated with systemic inflammation, coagulopathies, endothelial damage, thrombo-inflammation, immune system deregulation and disruption of angiotensin converting enzyme signaling pathways. To date, the most promising therapeutic approaches in COVID-19 pandemic are linked to the development of vaccines. However, the fight against COVID-19 pandemic in the short and mid-term cannot only rely on vaccines strategies, in particular given the growing proportion of more contagious and more lethal variants among exposed population (the English, South African and Brazilian variants).
View Article and Find Full Text PDFRadiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers. Its clinical management remains unclear, and few preclinical data are available on its underlying pathophysiology. The therapeutic strategy is difficult to establish because few prospective and randomized trials are available.
View Article and Find Full Text PDFNuclear accidents or acts of terrorism involving radioactive sources might lead to mass casualties irradiation. The hematopoietic system is one of the most critical and radiation-sensitive tissues because the limited life span of blood cells requires the continuous division of hematopoietic stem cells (HSCs) into the bone marrow. The radiation-induced hematopoietic syndrome, RI-HS, is an impairment of the hematopoiesis that will result in pancytopenia of various degrees.
View Article and Find Full Text PDFApplications using alumina nanoparticles (AlO NPs) have incredibly increased in different fields of activity. In defense and aerospace fields, solid composite propellants use leads to complex combustion aerosols emissions containing high concentrations of AlO NPs and hydrogen chloride gas (HCl). To better characterize potential hazard resulting from exposure to these aerosols, this study assesses cytotoxic effects of mixtures containing both compounds on human pulmonary alveolar epithelial cells (A549 cell line) after 24 h exposures.
View Article and Find Full Text PDFWe here determine the influence of mesenchymal stem cell (MSC) therapy on the progression of solid tumors. The influence of MSCs was investigated in human colorectal cancer cells as well as in an immunocompetent rat model of colorectal carcinogenesis representative of the human pathology. Treatment with bone marrow (BM)-derived MSCs significantly reduced both cancer initiation and cancer progression by increasing the number of tumor-free animals as well as decreasing the number and the size of the tumors by half, thereby extending their lifespan.
View Article and Find Full Text PDFThe cutaneous radiation syndrome is the clinical consequence of local high-dose irradiation. It is characterized by extensive inflammation, necrosis, and poor revascularization of the skin, resulting in muscle inflammation and fibrosis. Based on these physiopathological processes, subcutaneous injections of adipose-tissue-derived stem/stromal cells have shown favorable effects on skin-wound healing in a minipig model of cutaneous radiation syndrome, in which muscle fibrosis persisted.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFChronic skin ulcers and burns require advanced treatments. Mesenchymal Stromal Cells (MSCs) are effective in treating these pathologies. Bone Morphogenic Protein-2 (BMP-2) is known to enhance angiogenesis.
View Article and Find Full Text PDFCutaneous radiation syndrome caused by high dose located irradiation is characterized by delayed symptoms, incomplete wound healing, and poor revascularization. Subcutaneous adipose tissue derived stromal/stem cells have been shown to improve skin repair in a minipig model of cutaneous radiation syndrome despite a subcutaneous defect being a consequence of radio-induced muscular fibrosis. Based on the pro-myogenic potential of stromal/stem cells, a new protocol combining subcutaneous and intramuscular injections was evaluated in a preliminary study.
View Article and Find Full Text PDFThere is little information on the fate of infused mesenchymal stem cells (MSCs) and long-term side effects after irradiation exposure. We addressed these questions using human MSCs (hMSCs) intravenously infused to nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice submitted to total body irradiation (TBI) or local irradiation (abdominal or leg irradiation). The animals were sacrificed 3 to 120 days after irradiation and the quantitative and spatial distribution of hMSCs were studied by polymerase chain reaction (PCR).
View Article and Find Full Text PDFCurr Pharm Biotechnol
September 2014
Bone marrow stroma is damaged by chemotherapy and irradiation protocol. Bone marrow microenvironment supports haematopoiesis and comprises Mesenchymal Stem Cells (MSCs). Coinfusion of MSCs with hematopoietic stem cells (HSC) improves engraftment and accelerates haematopoietic recovery.
View Article and Find Full Text PDFTo evaluate the potential therapeutic effect of the infusion of hMSCs for the correction of liver injuries, we performed total body radiation exposure of NOD/SCID mice. After irradiation, mir-27b level decreases in liver, increasing the directional migration of hMSCs by upregulating SDF1 α . A significant increase in plasmatic transaminases levels, apoptosis process in the liver vascular system, and in oxidative stress were observed.
View Article and Find Full Text PDFRadiotherapy may induce irreversible damage on healthy tissues surrounding the tumor. It has been reported that the majority of patients receiving pelvic radiation therapy show early or late tissue reactions of graded severity as radiotherapy affects not only the targeted tumor cells but also the surrounding healthy tissues. The late adverse effects of pelvic radiotherapy concern 5% to 10% of them, which could be life threatening.
View Article and Find Full Text PDF