Publications by authors named "Sabine De La Porte"

Ca signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2) and evaluated their cardiac function.

View Article and Find Full Text PDF
Article Synopsis
  • Oxytocin (OT) is a hormone that plays a key role in how mammals behave socially, and it is stored in special structures in the brain called LDCVs.
  • Researchers found that tiny channels in lysosomes (called TPCs) are important for releasing oxytocin by helping prepare these storage units, even if they don't directly release it right away.
  • Mice that couldn’t use TPCs showed less oxytocin and struggled with social behaviors, but giving them oxytocin helped them act normally again.
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca dysregulation linked to Ca influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD glycohydrolase-producing modulators of Ca signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is characterized by early onset of behavioral and cognitive alterations. Low plasma levels of oxytocin (OT) have also been found in ASD patients; recently, a critical role for the enzyme CD38 in the regulation of OT release was demonstrated. CD38 is important in regulating several Ca-dependent pathways, but beyond its role in regulating OT secretion, it is not known whether a deficit in CD38 expression leads to functional modifications of the prefrontal cortex (PFC), a structure involved in social behavior.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice.

View Article and Find Full Text PDF

A new approach to treating Duchenne muscular dystrophy was investigated by using the ester or amide covalent association of arginine [nitric oxide (NO) pathway] and butyrate [histone deacetylase (HDAC) inhibition] in mdx mice and patient myotubes. Two prodrugs were synthesized, and the beneficial effects on dystrophic phenotype were studied. Nerve excitability abnormalities detected in saline-treated mice were almost totally rescued in animals treated at low doses (50-100 mg/kg/d).

View Article and Find Full Text PDF

As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety.

View Article and Find Full Text PDF

Dystrophin, the protein responsible for X-linked Duchenne muscular dystrophy (DMD), is normally expressed in both muscle and brain, which explains that its loss also leads to cognitive deficits. The utrophin protein, an autosomal homolog, is a natural candidate for dystrophin replacement in patients. Pharmacological upregulation of endogenous utrophin improves muscle physiology in dystrophin-deficient mdx mice, and represents a potential therapeutic tool that has the advantage of allowing delivery to various organs following peripheral injections.

View Article and Find Full Text PDF

Background: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.

Methodology/principal Findings: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model.

View Article and Find Full Text PDF

Background: In wild populations phenotypic differentiation of skeletal structures is influenced by many factors including epigenetic interactions and plastic response to environmental influences, possibly blurring the expression of genetic differences. In contrast, laboratory animals provide the opportunity to separate environmental from genetic effects. The mouse mandible is particularly prone to such plastic variations because bone remodeling occurs late in postnatal ontogeny, in interaction with muscular loading.

View Article and Find Full Text PDF

Background: Sarcopenia is a major public health problem in industrialized nations, placing an increasing burden on public healthcare systems because the loss of skeletal muscle mass and strength that characterizes this affection increases the dependence and the risk of injury caused by sudden falls in elderly people. Albeit exercise and caloric restriction improve sarcopenia-associated decline of the muscular performances, a more suitable and focused pharmacological treatment is still lacking.

Methodology/principal Findings: In order to evaluate such a possible treatment, we investigated the effects of EGb 761, a Ginkgo biloba extract used in chronic age-dependent neurological disorders, on the function of the soleus muscle in aged rats.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), the most common and severe X-linked myopathy, is characterized by the lack of dystrophin, a sub-sarcolemmal protein necessary for normal muscle functions. In a previous study of the lipid content of skeletal muscles of dystrophic (mdx) mice, the animal model for DMD, by in situ Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry (MALDI-MS), an inversion of the phosphatidylcholine PC34:2/PC34:1 ion peaks intensity ratio was observed between destructured (abnormal fiber morphology) and structured (normal fiber morphology). A possible treatment for this dramatic disease is to introduce an exogenous nitric oxide (NO) donor into the organism, leading to an increase of utrophin and a regression of the dystrophic phenotype.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disorder associated with dystrophin deficiency that results in chronic inflammation, sarcolemma damage, and severe skeletal muscle degeneration. Recently, the use of L-arginine, the substrate of nitric oxide synthase (nNOS), has been proposed as a pharmacological treatment to attenuate the dystrophic pattern of DMD. However, little is known about signaling events that occur in dystrophic muscle with l-arginine treatment.

View Article and Find Full Text PDF

Human striated muscle samples, from male control and Duchenne muscular dystrophy-affected children, were subjected to cluster-time-of-flight secondary ion mass spectrometry (cluster-ToF-SIMS) imaging using a 25 keV Bi(3)(+) liquid metal ion gun under static SIMS conditions. Spectra and ion density maps, or secondary ion images, were acquired in both positive and negative ion mode over several areas of 500 x 500 microm(2) (image resolution, 256 x 256 pixels). Characteristic distributions of various lipids were observed.

View Article and Find Full Text PDF

A possible treatment for Duchenne muscular dystrophies would be to compensate for dystrophin loss by increasing the expression of utrophin, another cytoskeletal protein of the muscle membrane. We previously found that L-arginine, the substrate for nitric oxide synthase, significantly increased utrophin level in muscle and targeted it to the sarcolemma. Here, we have addressed the expected benefit in the mdx mice.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disease affecting 1 boy out of 3500. DMD is due to the lack of a submembranous cytoskeletal protein named dystrophin, leading to the progressive degeneration of skeletal, cardiac and smooth muscle tissue. A milder form of the disease, Becker muscular dystrophy (BMD), is characterised by the presence of a semi-functional truncated dystrophin, or the full-length dystrophin at reduced level.

View Article and Find Full Text PDF

Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), a severe X-linked genetic disease affecting one in 3500 boys, is the most common myopathy in children. DMD is due to a lack of dystrophin, a submembrane protein of the cytoskeleton, which leads to the progressive degeneration of skeletal, cardiac, and smooth muscle tissue. A milder form of the disease, Becker muscular dystrophy (BMD), is characterized by the presence of a semifunctional truncated dystrophin, or reduced levels of full-length dystrophin.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a neuromuscular disease linked to the lack of the dystrophin, a submembrane protein, leading to muscle weakness and associated with a defect of the lipid metabolism. A study of the fatty acid composition of glycerophosphatidylcholines by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and tandem mass spectrometry (MS/MS) enabled us to characterize a change of the lipid composition of dystrophic cells at the time of the differentiation. This modification has been used as a marker to identify with profiling and imaging MALDI-ToF MS regenerating areas in sections of an mdx mouse leg muscle.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin.

View Article and Find Full Text PDF