Publications by authors named "Sabine Brast"

Organic cation transporters (OCTs) are membrane proteins with relevant physiological (because they accept neurotransmitters as substrate) and pharmacological (because of their interaction with drugs) roles. The human OCTs hOCT1 (/hOCT1) and hOCT2 (/hOCT2) are highly expressed in hepatic (hOCT1) and in renal and neuronal tissue (hOCT2), suggesting a possible role in modulating neurotransmitter activity in the liver, kidney, and brain, and their clearance from the blood. Even though there are several data demonstrating that OCTs are regulated under various patho-physiological conditions, it remains largely unknown which proteins directly interact with OCTs and thereby influence their cellular processing, localization, and function.

View Article and Find Full Text PDF

CD63 is a ubiquitously expressed member of the tetraspanin superfamily. Using a mating-based split-ubiquitin-yeast 2-hybrid system, pull-down experiments, total internal reflection fluorescence microscopy, Förster resonance energy transfer, and biotinylation assays, we found that CD63 interacts with human organic cation transporter 2 (hOCT2), which transports endogenous and exogenous substrates, such as neurotransmitters and drugs in several epithelial cells. CD63 overexpression affects cellular localization of hOCT2 expressed in human embryonic kidney (HEK)293 cells.

View Article and Find Full Text PDF

Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC), atypical enteropathogenic E. coli, and Shiga toxin-producing E. coli differ in their virulence factor profiles, clinical manifestations, and prognosis, and they require different therapeutic measures.

View Article and Find Full Text PDF

It was previously shown that alpha1-antitrypsin (AAT) interacts with the type III secreted (T3S) EspB and EspD proteins of enteropathogenic Escherichia coli (EPEC), resulting in reduced functionality of the proteins. To determine if AAT is also able to interact with T3S proteins of other pathogens, the binding of AAT to Yop proteins of Yersinia enterocolitica was analysed. AAT did not interact with YopB or YopD, which have functions in type III translocation similar to EspB and EspD in EPEC, but specifically interacts with YopM, a member of the leucine-rich repeat (LRR) family of proteins, in overlay and pull-down assays.

View Article and Find Full Text PDF